Tensor completion using total variation and low-rank matrix factorization

被引:130
|
作者
Ji, Teng-Yu [1 ]
Huang, Ting-Zhu [1 ]
Zhao, Xi-Le [1 ]
Ma, Tian-Hui [1 ]
Liu, Gang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Resrarch Ctr Image & Vis Comp, Chengdu 611731, Sichuan, Peoples R China
关键词
Tensor completion; Total variation; Low-rank matrix factorization; Block coordinate descent; ALGORITHM;
D O I
10.1016/j.ins.2015.07.049
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimizers. Experimental results are reported to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme. (C) 2015 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:243 / 257
页数:15
相关论文
共 50 条
  • [21] Low-Rank Tensor Completion and Total Variation Minimization for Color Image Inpainting
    Qin, Mengjie
    Li, Zhuorong
    Chen, Shengyong
    Guan, Qiu
    Zheng, Jianwei
    IEEE ACCESS, 2020, 8 (08): : 53049 - 53061
  • [22] Multimodal Core Tensor Factorization and its Applications to Low-Rank Tensor Completion
    Zeng, Haijin
    Xue, Jize
    Luong, Hiap Q.
    Philips, Wilfried
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7010 - 7024
  • [23] Unifying tensor factorization and tensor nuclear norm approaches for low-rank tensor completion
    Du, Shiqiang
    Xiao, Qingjiang
    Shi, Yuqing
    Cucchiara, Rita
    Ma, Yide
    NEUROCOMPUTING, 2021, 458 : 204 - 218
  • [24] Total Variation Regularized Reweighted Low-rank Tensor Completion for Color Image Inpainting
    Li, Lingwei
    Jiang, Fei
    Shen, Ruimin
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2152 - 2156
  • [25] Low-rank tensor completion based on tensor train rank with partially overlapped sub-blocks and total variation
    He, Jingfei
    Yang, Zezhong
    Zheng, Xunan
    Zhang, Xiaoyue
    Li, Ao
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2024, 129
  • [26] Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization
    Qiu, Duo
    Bai, Minru
    Ng, Michael K.
    Zhang, Xiongjun
    NEUROCOMPUTING, 2021, 435 : 197 - 215
  • [27] Robust Low-Rank and Sparse Tensor Decomposition for Low-Rank Tensor Completion
    Shi, Yuqing
    Du, Shiqiang
    Wang, Weilan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7138 - 7143
  • [28] Low-Rank Tensor Completion by Approximating the Tensor Average Rank
    Wang, Zhanliang
    Dong, Junyu
    Liu, Xinguo
    Zeng, Xueying
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4592 - 4600
  • [29] Low-Rank Matrix Completion
    Chi, Yuejie
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (05) : 178 - 181
  • [30] Adaptive total variation and second-order total variation-based model for low-rank tensor completion
    Li, Xin
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ji, Teng-Yu
    Zheng, Yu-Bang
    Deng, Liang-Jian
    NUMERICAL ALGORITHMS, 2021, 86 (01) : 1 - 24