Haruspicy 2: The anisotropic generating function of self-avoiding polygons is not D-finite

被引:4
|
作者
Rechnitzer, A [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
enumeration; self-avoiding polygons; solvability; differentiably finite power series;
D O I
10.1016/j.jcta.2005.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the anisotropic generating function of self-avoiding polygons is not a D-finite function-proving a conjecture of Guttmann [Discrete Math. 217 (2000) 167-189] and Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. This result is also generalised to self-avoiding polygons on hypercubic lattices. Using the haruspicy techniques developed in an earlier paper [Rechnitzer, Adv. Appl. Math. 30 (2003) 228-257], we are also able to prove the form of the coefficients of the anisotropic generating function, which was first conjectured in Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:520 / 546
页数:27
相关论文
共 50 条
  • [1] Haruspicy 3: The anisotropic generating function of directed bond-animals is not D-finite
    Rechnitzer, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (06) : 1031 - 1049
  • [2] A new two-variable generating function for convex self-avoiding polygons
    Moraal, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (45): : 7865 - 7873
  • [3] Interacting self-avoiding polygons
    Betz, Volker
    Schaefer, Helge
    Taggi, Lorenzo
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 1321 - 1335
  • [4] DIRECTED SELF-AVOIDING POLYGONS
    MANNA, SS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (08): : 2227 - 2231
  • [5] GENERATING-FUNCTIONS FOR CLASSES OF SELF-AVOIDING POLYGONS ON THE SQUARE LATTICE
    MORAAL, H
    PHYSICA A, 1994, 203 (01): : 91 - 102
  • [6] Scaling function and universal amplitude combinations for self-avoiding polygons
    Richard, C
    Guttmann, AJ
    Jensen, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (36): : L495 - L501
  • [7] Asymptotically faster algorithm for counting self-avoiding walks and self-avoiding polygons
    Zbarsky, Samuel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (50)
  • [8] The shapes of self-avoiding polygons with torsion
    Orlandini, E
    Tesi, MC
    vanRensburg, EJJ
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (20): : L693 - L698
  • [9] Exponents of intrachain correlation for self-avoiding walks and knotted self-avoiding polygons
    Uehara, Erica
    Deguchi, Tetsuo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (34)
  • [10] Self-avoiding polygons and walks in slits
    Alvarez, J.
    van Rensburg, E. J. Janse
    Soteros, C. E.
    Whittington, S. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (18)