Rational promoter elements and evolutionary engineering approaches for efficient xylose fermentation in Saccharomyces cerevisiae

被引:2
|
作者
Sang, Yaxin [1 ]
Xue, Qian [1 ,2 ]
Bai, Zishang [3 ]
Wang, Jingyu [4 ]
Cao, Limin [2 ]
机构
[1] Agr Univ Hebei, Coll Food Sci & Technol, 2596 Lekainandajie, Baoding 071001, Hebei, Peoples R China
[2] Capital Normal Univ, Coll Life Sci, 105 Xisanhuanbeilu, Beijing 100048, Peoples R China
[3] Renmin Univ China, High Sch, 37 Zhongguancun St, Beijing 100080, Peoples R China
[4] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
中国国家自然科学基金;
关键词
PENTOSE-PHOSPHATE PATHWAY; ETHANOL-PRODUCTION; REDUCTASE; OVEREXPRESSION; IMPROVEMENT; PREFERENCE;
D O I
10.1063/1.4966707
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We screened and identified a set of efficient promoters in Saccharomyces cerevisiae that maintained their relatively strong strengths to regulate the heterologous xylose-assimilating pathway genes XYL1 and XYL2, and native XKS1 and pentose phosphate pathway four genes, irrespective of glucose or xylose fermentation medium. In this study, we developed a rapid and efficient xylose-fermenting S. cerevisiae strain 7-1 based on balanced pathway expression levels driven by our proposed strong promoters. Next, 7-1 was used to initialize the evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation. The finally evolved strain of 7-1E1 displayed a high ethanol yield (0.45 g/g) and low xylitol accumulation (0.13 g/g). Moreover, the evolved strain of 7-1E1 displays great potential for ethanol production from lignocellulosic biomass. This work reveals that efficient xylose assimilation is attributed to the elevated expression levels of xylose utilization genes, which was accomplished through the strong promoter rational regulation in the chromosome of the evolved strain. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    Sun-Mi Lee
    Taylor Jellison
    Hal S Alper
    Biotechnology for Biofuels, 7
  • [12] Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    Lee, Sun-Mi
    Jellison, Taylor
    Alper, Hal S.
    BIOTECHNOLOGY FOR BIOFUELS, 2014, 7
  • [13] Engineering Saccharomyces cerevisiae for xylose utilization
    Pronk, J
    Kuyper, M
    Toirkens, M
    Winkler, R
    van Dijken, H
    de Laat, W
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S86 - S87
  • [14] An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae
    Vargas, Beatriz de Oliveira
    dos Santos, Jade Ribeiro
    Pereira, Goncalo Amarante Guimaraes
    de Mello, Fellipe da Silveira Bezerra
    PEERJ, 2023, 11
  • [15] Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects
    Moyses, Danuza Nogueira
    Branco Reis, Viviane Castelo
    Moreira de Almeida, Joao Ricardo
    Pepe de Moraes, Lidia Maria
    Goncalves Torres, Fernando Araripe
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (03)
  • [16] gTME for Improved Xylose Fermentation of Saccharomyces cerevisiae
    Liu, Hongmei
    Yan, Ming
    Lai, Cangang
    Xu, Lin
    Ouyang, Pingkai
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 160 (02) : 574 - 582
  • [17] Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion
    Hector, Ronald E.
    Dien, Bruce S.
    Cotta, Michael A.
    Qureshi, Nasib
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2011, 38 (09) : 1193 - 1202
  • [18] gTME for Improved Xylose Fermentation of Saccharomyces cerevisiae
    Hongmei Liu
    Ming Yan
    Cangang Lai
    Lin Xu
    Pingkai Ouyang
    Applied Biochemistry and Biotechnology, 2010, 160 : 574 - 582
  • [19] Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
    Chu, Byron C. H.
    Lee, Hung
    BIOTECHNOLOGY ADVANCES, 2007, 25 (05) : 425 - 441
  • [20] Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae
    Rebekah McKenna
    Brian Thompson
    Shawn Pugh
    David R Nielsen
    Microbial Cell Factories, 13