Rational promoter elements and evolutionary engineering approaches for efficient xylose fermentation in Saccharomyces cerevisiae

被引:2
|
作者
Sang, Yaxin [1 ]
Xue, Qian [1 ,2 ]
Bai, Zishang [3 ]
Wang, Jingyu [4 ]
Cao, Limin [2 ]
机构
[1] Agr Univ Hebei, Coll Food Sci & Technol, 2596 Lekainandajie, Baoding 071001, Hebei, Peoples R China
[2] Capital Normal Univ, Coll Life Sci, 105 Xisanhuanbeilu, Beijing 100048, Peoples R China
[3] Renmin Univ China, High Sch, 37 Zhongguancun St, Beijing 100080, Peoples R China
[4] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
中国国家自然科学基金;
关键词
PENTOSE-PHOSPHATE PATHWAY; ETHANOL-PRODUCTION; REDUCTASE; OVEREXPRESSION; IMPROVEMENT; PREFERENCE;
D O I
10.1063/1.4966707
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We screened and identified a set of efficient promoters in Saccharomyces cerevisiae that maintained their relatively strong strengths to regulate the heterologous xylose-assimilating pathway genes XYL1 and XYL2, and native XKS1 and pentose phosphate pathway four genes, irrespective of glucose or xylose fermentation medium. In this study, we developed a rapid and efficient xylose-fermenting S. cerevisiae strain 7-1 based on balanced pathway expression levels driven by our proposed strong promoters. Next, 7-1 was used to initialize the evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation. The finally evolved strain of 7-1E1 displayed a high ethanol yield (0.45 g/g) and low xylitol accumulation (0.13 g/g). Moreover, the evolved strain of 7-1E1 displays great potential for ethanol production from lignocellulosic biomass. This work reveals that efficient xylose assimilation is attributed to the elevated expression levels of xylose utilization genes, which was accomplished through the strong promoter rational regulation in the chromosome of the evolved strain. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery
    Hoang Nguyen Tran, Phuong
    Ko, Ja Kyong
    Gong, Gyeongtaek
    Um, Youngsoon
    Lee, Sun-Mi
    BIOTECHNOLOGY FOR BIOFUELS, 2020, 13 (01)
  • [42] Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
    Tomohisa Hasunuma
    Kyung-mo Sung
    Tomoya Sanda
    Kazuya Yoshimura
    Fumio Matsuda
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2011, 90 : 997 - 1004
  • [43] Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    Kim, Soo Rin
    Park, Yong-Cheol
    Jin, Yong-Su
    Seo, Jin-Ho
    BIOTECHNOLOGY ADVANCES, 2013, 31 (06) : 851 - 861
  • [44] High-level functional expression of a fungal xylose isomerase:: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    Kuyper, M
    Harhangi, HR
    Stave, AK
    Winkler, AA
    Jetten, MSM
    de Laat, WTAM
    den Ridder, JJJ
    Op den Camp, HJM
    van Dijken, JP
    Pronk, JT
    FEMS YEAST RESEARCH, 2003, 4 (01) : 69 - 78
  • [45] Engineering Chromatin Regulation of Xylose Utilization in Budding Yeast Saccharomyces cerevisiae for Efficient Bioconversion
    Wang, Wei-Bin
    Tang, Rui-Qi
    Yuan, Bing
    Wang, Yue
    Liu, Guo-Dong
    Li, Dong-Min
    Zhang, Hong-Jia
    Zhao, Xin-Qing
    Bai, Feng-Wu
    ACS SYNTHETIC BIOLOGY, 2025, 14 (03): : 794 - 803
  • [46] The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae
    Dzanaeva, Ljubov
    Kruk, Barbara
    Ruchala, Justyna
    Nielsen, Jens
    Sibirny, Andriy
    Dmytruk, Kostyantyn
    CELL BIOLOGY INTERNATIONAL, 2020, 44 (08) : 1606 - 1615
  • [47] Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
    Aeling, Kimberly A.
    Salmon, Kirsty A.
    Laplaza, Jose M.
    Li, Ling
    Headman, Jennifer R.
    Hutagalung, Alex H.
    Picataggio, Stephen
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (11) : 1597 - 1604
  • [48] Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery
    Phuong Hoang Nguyen Tran
    Ja Kyong Ko
    Gyeongtaek Gong
    Youngsoon Um
    Sun-Mi Lee
    Biotechnology for Biofuels, 13
  • [49] ENGINEERING OF XYLOSE METABOLIC PATHWAY IN SACCHAROMYCES-CEREVISIAE
    HO, NWY
    DENG, SXX
    CHEN, JD
    FASEB JOURNAL, 1991, 5 (06): : A1510 - A1510
  • [50] Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiaeharbouring xylose isomerase
    Justin Smith
    Eugéne van Rensburg
    Johann F Görgens
    BMC Biotechnology, 14