gTME for Improved Xylose Fermentation of Saccharomyces cerevisiae

被引:35
|
作者
Liu, Hongmei [1 ]
Yan, Ming [1 ]
Lai, Cangang [1 ]
Xu, Lin [1 ]
Ouyang, Pingkai [1 ]
机构
[1] Nanjing Univ Technol, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
gTME; Xylose uptake; Saccharomyces cerevisiae; TRANSCRIPTION MACHINERY; ETHANOL-PRODUCTION; ESCHERICHIA-COLI; TARGETS;
D O I
10.1007/s12010-008-8431-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. In our study, the application of gTME to Saccharomyces cerevisiae was to improve xylose utilization and tolerance, which is a key trait for many biofuel programs. Mutation of the transcription factor spt15 was introduced by error-prone polymerase chain reaction and then screened on media using xylose as the sole carbon source. The selected out strain spt15-25 showed modest growth rates in the media containing 50, 100, and 150 g/L of xylose or glucose. Under the following fermentation condition: 30 A degrees C, rotating speed of 200 r/min, 500-mL Erlenmeyer flask containing 100-mL media, after 109 h, 93.5% of xylose was consumed in 50 g/L xylose medium. Meanwhile, 98.3% glucose can be metabolized in 50-g/L glucose medium. And the carbon source was 50 g/L glucose-xylose (w/w = 1); the utilization ratio of xylose and glucose was 90.8% and 97.3%, respectively. And all the xylitol concentration was below 2.48 g/L.
引用
收藏
页码:574 / 582
页数:9
相关论文
共 50 条
  • [1] gTME for Improved Xylose Fermentation of Saccharomyces cerevisiae
    Hongmei Liu
    Ming Yan
    Cangang Lai
    Lin Xu
    Pingkai Ouyang
    Applied Biochemistry and Biotechnology, 2010, 160 : 574 - 582
  • [2] XYLOSE FERMENTATION BY SACCHAROMYCES-CEREVISIAE
    KOTTER, P
    CIRIACY, M
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1993, 38 (06) : 776 - 783
  • [3] Directed Evolution of Xylose Isomerase for Improved Xylose Catabolism and Fermentation in the Yeast Saccharomyces cerevisiae
    Lee, Sun-Mi
    Jellison, Taylor
    Alper, Hal S.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (16) : 5708 - 5716
  • [4] gTME for improved tolerance and adaptation of Saccharomyces cerevisiae to lignocellulosic hydrolysates
    Liu, Hongmei
    Yan, Ming
    Lai, Cangang
    Xu, Lin
    Ouyang, Pingkai
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S396 - S396
  • [5] Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects
    Moyses, Danuza Nogueira
    Branco Reis, Viviane Castelo
    Moreira de Almeida, Joao Ricardo
    Pepe de Moraes, Lidia Maria
    Goncalves Torres, Fernando Araripe
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (03)
  • [6] Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
    Chu, Byron C. H.
    Lee, Hung
    BIOTECHNOLOGY ADVANCES, 2007, 25 (05) : 425 - 441
  • [7] gTME for Improved Adaptation of Saccharomyces cerevisiae to Corn Cob Acid Hydrolysate
    Liu, Hongmei
    Liu, Kai
    Yan, Ming
    Xu, Lin
    Ouyang, Pingkai
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2011, 164 (07) : 1150 - 1159
  • [8] gTME for Improved Adaptation of Saccharomyces cerevisiae to Corn Cob Acid Hydrolysate
    Hongmei Liu
    Kai Liu
    Ming Yan
    Lin Xu
    Pingkai Ouyang
    Applied Biochemistry and Biotechnology, 2011, 164 : 1150 - 1159
  • [9] Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae
    Olofsson, Kim
    Rudolf, Andreas
    Liden, Gunnar
    JOURNAL OF BIOTECHNOLOGY, 2008, 134 (1-2) : 112 - 120
  • [10] Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes
    Jin Konishi
    Akira Fukuda
    Kozue Mutaguchi
    Takeshi Uemura
    Biotechnology Letters, 2015, 37 : 1623 - 1630