Deep Multi-label Classification in Affine Subspaces

被引:3
|
作者
Kurmann, Thomas [1 ]
Marquez-Neila, Pablo [1 ]
Wolf, Sebastian [2 ]
Sznitman, Raphael [1 ]
机构
[1] Univ Bern, Bern, Switzerland
[2] Univ Hosp Bern, Bern, Switzerland
关键词
D O I
10.1007/978-3-030-32239-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification (MLC) problems are becoming increasingly popular in the context of medical imaging. This has in part been driven by the fact that acquiring annotations for MLC is far less burdensome than for semantic segmentation and yet provides more expressiveness than multi-class classification. However, to train MLCs, most methods have resorted to similar objective functions as with traditional multi-class classification settings. We show in this work that such approaches are not optimal and instead propose a novel deep MLC classification method in affine subspace. At its core, the method attempts to pull features of class-labels towards different affine subspaces while maximizing the distance between them. We evaluate the method using two MLC medical imaging datasets and show a large performance increase compared to previous multi-label frameworks. This method can be seen as a plug-in replacement loss function and is trainable in an end-to-end fashion.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 50 条
  • [21] Multi-Label Arabic Text Classification Based On Deep Learning
    Alsukhni, Batool
    [J]. 2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 475 - 477
  • [22] Multi-label Garbage Image Classification Based on Deep Learning
    Yan, Kang
    Si, Wenyu
    Hang, Jin
    Zhou, Hong
    Zhu, Quanyin
    [J]. 2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 150 - 153
  • [23] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [24] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    [J]. 2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [25] The advances in multi-label classification
    Chen, Shijun
    Gao, Lin
    [J]. 2014 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT (ICMECG), 2014, : 240 - 245
  • [26] Multi-label Dysfluency Classification
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    [J]. SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 290 - 301
  • [27] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    [J]. Neural Processing Letters, 2019, 50 : 1361 - 1380
  • [28] Label prompt for multi-label text classification
    Song, Rui
    Liu, Zelong
    Chen, Xingbing
    An, Haining
    Zhang, Zhiqi
    Wang, Xiaoguang
    Xu, Hao
    [J]. APPLIED INTELLIGENCE, 2023, 53 (08) : 8761 - 8775
  • [29] Label prompt for multi-label text classification
    Rui Song
    Zelong Liu
    Xingbing Chen
    Haining An
    Zhiqi Zhang
    Xiaoguang Wang
    Hao Xu
    [J]. Applied Intelligence, 2023, 53 : 8761 - 8775
  • [30] Collaborative Learning of Label Semantics and Deep Label-Specific Features for Multi-Label Classification
    Hang, Jun-Yi
    Zhang, Min-Ling
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9860 - 9871