Weighted Marshall-Olkin bivariate exponential distribution

被引:20
|
作者
Jamalizadeh, Ahad [1 ]
Kundu, Debasis [2 ]
机构
[1] Shahid Bahonar Univ Kerman, Fac Math & Comp, Dept Stat, Kerman 7616914111, Iran
[2] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
joint probability density function; conditional probability density function; singular distribution; maximum-likelihood estimators; Fisher information matrix; asymptotic distribution;
D O I
10.1080/02331888.2012.670640
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, Gupta and Kundu [R.D. Gupta and D. Kundu, A new class of weighted exponential distributions, Statistics 43 (2009), pp. 621-634] have introduced a new class of weighted exponential (WE) distributions, and this can be used quite effectively to model lifetime data. In this paper, we introduce a new class of weighted Marshall-Olkin bivariate exponential distributions. This new singular distribution has univariate WE marginals. We study different properties of the proposed model. There are four parameters in this model and the maximum-likelihood estimators (MLEs) of the unknown parameters cannot be obtained in explicit forms. We need to solve a four-dimensional optimization problem to compute the MLEs. One data set has been analysed for illustrative purposes and finally we propose some generalization of the proposed model.
引用
收藏
页码:917 / 928
页数:12
相关论文
共 50 条
  • [21] A simulation study on the correlation structure of Marshall-Olkin bivariate Weibull distribution
    Lai, Chin-Diew
    Lin, Gwo Dong
    Govindaraju, K.
    Pirikahu, Sarah
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (01) : 156 - 170
  • [22] Generalized Marshall-Olkin exponentiated exponential distribution: Properties and applications
    Ozkan, Egemen
    Simsek, Gulhayat Golbasi
    [J]. PLOS ONE, 2023, 18 (01):
  • [23] Marshall-Olkin bivariate Weibull distributions and processes
    Jose, K. K.
    Ristic, Miroslav M.
    Joseph, Ancy
    [J]. STATISTICAL PAPERS, 2011, 52 (04) : 789 - 798
  • [24] Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm
    Kundu, Debasis
    Dey, Arabin Kumar
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 956 - 965
  • [25] Bivariate Issues in Leader Election Algorithms with Marshall-Olkin Limit Distribution
    Zhang, Cheng
    Mahmoud, Hosam
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (02) : 401 - 418
  • [26] CHARACTERIZATIONS OF THE BIVARIATE EXPONENTIAL-DISTRIBUTION AND MARSHALL - OLKIN DISTRIBUTION AND STABILITY
    OBRETENOV, A
    RACHEV, S
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 982 : 136 - 150
  • [27] Generalized Order Statistics from Marshall-Olkin Extended Exponential Distribution
    Athar, Haseeb
    Nayabuddin
    Zarrin, Saima
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2019, 18 (02): : 129 - 135
  • [28] The Marshall-Olkin length-biased exponential distribution and its applications
    ul Haq, Muhammad Ahsan
    Usman, Rana Muhammad
    Hashmi, Sharqa
    Al-Omeri, Amer Ibrahim
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (02) : 246 - 251
  • [29] Kumaraswamy Marshall-Olkin Logistic Exponential分布
    刘焱哲
    贾俊梅
    闫在在
    [J]. 数理统计与管理, 2021, 40 (04) : 654 - 670
  • [30] On Record Values and Reliability Properties of Marshall-Olkin Extended Exponential Distribution
    Jose, K. K.
    Krishna, E.
    Ristic, Miroslav M.
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2014, 13 (03): : 247 - 262