Weighted Marshall-Olkin bivariate exponential distribution

被引:20
|
作者
Jamalizadeh, Ahad [1 ]
Kundu, Debasis [2 ]
机构
[1] Shahid Bahonar Univ Kerman, Fac Math & Comp, Dept Stat, Kerman 7616914111, Iran
[2] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
joint probability density function; conditional probability density function; singular distribution; maximum-likelihood estimators; Fisher information matrix; asymptotic distribution;
D O I
10.1080/02331888.2012.670640
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, Gupta and Kundu [R.D. Gupta and D. Kundu, A new class of weighted exponential distributions, Statistics 43 (2009), pp. 621-634] have introduced a new class of weighted exponential (WE) distributions, and this can be used quite effectively to model lifetime data. In this paper, we introduce a new class of weighted Marshall-Olkin bivariate exponential distributions. This new singular distribution has univariate WE marginals. We study different properties of the proposed model. There are four parameters in this model and the maximum-likelihood estimators (MLEs) of the unknown parameters cannot be obtained in explicit forms. We need to solve a four-dimensional optimization problem to compute the MLEs. One data set has been analysed for illustrative purposes and finally we propose some generalization of the proposed model.
引用
收藏
页码:917 / 928
页数:12
相关论文
共 50 条
  • [11] The Marshall-Olkin logistic-exponential distribution
    Mansoor, M.
    Tahir, M. H.
    Cordeiro, Gauss M.
    Provost, Serge B.
    Alzaatreh, Ayman
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (02) : 220 - 234
  • [13] A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution
    Gillariose, Jiju
    Tomy, Lishamol
    Jamal, Farrukh
    Chesneau, Christophe
    [J]. JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2021, 20 (02): : 129 - 152
  • [14] Recent Developments About Marshall-Olkin Bivariate Distribution
    Bayramoglu, Ismihan
    Ozkut, Murat
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (04)
  • [15] Bayes estimation for the Marshall-Olkin bivariate Weibull distribution
    Kundu, Debasis
    Gupta, Arjun K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 271 - 281
  • [16] Inference on Marshall-Olkin Bivariate Exponential in the Presence of Dependent Left Censoring
    Davarzani, Nasser
    Golparvar, Leila
    Parsian, Ahmad
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2019, 13 (01)
  • [17] BAYES ESTIMATION FOR THE MARSHALL-OLKIN EXPONENTIAL-DISTRIBUTION
    PENA, EA
    GUPTA, AK
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1990, 52 (02): : 379 - 389
  • [19] The Marshall-Olkin Frechet Distribution
    Krishna, E.
    Jose, K. K.
    Alice, T.
    Ristic, Miroslav M.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (22) : 4091 - 4107
  • [20] Bivariate Issues in Leader Election Algorithms with Marshall-Olkin Limit Distribution
    Cheng Zhang
    Hosam Mahmoud
    [J]. Methodology and Computing in Applied Probability, 2016, 18 : 401 - 418