The box integrals in momentum-twistor geometry

被引:23
|
作者
Hodges, Andrew [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Oxford OX2 6GG, England
来源
关键词
Supersymmetric gauge theory; Scattering Amplitudes;
D O I
10.1007/JHEP08(2013)051
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
An account is given of how the 'box integrals', as used for one-loop calculations in massless field theory, appear in momentum-twistor geometry. Particular attention is paid to the role of compact contour integration in representing the Feynman propagator in twistor space. An explicit calculation of all the box integrals, using only elementary methods, is included.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] The box integrals in momentum-twistor geometry
    Andrew Hodges
    Journal of High Energy Physics, 2013
  • [2] A note on twistor integrals
    Bloch, Spencer
    FEYNMAN AMPLITUDES, PERIODS AND MOTIVES, 2015, 648 : 1 - 10
  • [3] TWISTOR GEOMETRY
    VANDENBROEK, PM
    HELVETICA PHYSICA ACTA, 1984, 57 (04): : 429 - 458
  • [4] Twistor theory at fifty: from contour integrals to twistor strings
    Atiyah, Michael
    Dunajski, Maciej
    Mason, Lionel J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2206):
  • [5] Twistor geometry of the Flag manifold
    Altavilla, Amedeo
    Ballico, Edoardo
    Brambilla, Maria Chiara
    Salamon, Simon
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (01)
  • [6] Projective techniques in twistor geometry
    Altavilla, Amedeo
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025,
  • [7] Twistor geometry of the Flag manifold
    Amedeo Altavilla
    Edoardo Ballico
    Maria Chiara Brambilla
    Simon Salamon
    Mathematische Zeitschrift, 2023, 303
  • [8] Twistor Operators in Symplectic Geometry
    Svatopluk Krýsl
    Advances in Applied Clifford Algebras, 2022, 32
  • [9] Twistor geometry of light rays
    Penrose, R.
    Classical and Quantum Gravity, 14 (1/A):
  • [10] Twistor geometry of light rays
    Penrose, R
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) : A299 - A323