Projective techniques in twistor geometry

被引:0
|
作者
Altavilla, Amedeo [1 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2025年
关键词
Twistor geometry; Flag manifolds; Bidegree surfaces; Discriminant loci; Conic classification; Unitary transformations; ORTHOGONAL COMPLEX STRUCTURES; DISCRIMINANT LOCUS; SURFACES; IMMERSIONS; SPACE;
D O I
10.1007/s40574-025-00469-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This survey explores the interplay between twistor geometry and projective geometry, focusing on their applications to algebraic surfaces. We explore two main topics: the inclusion of twistor fibers and lines in these surfaces, and the behavior of twistor discriminant loci, with a particular focus on degree-2 surfaces. The study highlights contributions from Ballico and collaborators, comparing the twistor spaces of CP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}\mathbb{P}}<^>3$$\end{document} and the flag threefold F,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}},$$\end{document} which reveal fascinating contrasts and parallels. Key findings include a detailed analysis of surfaces in CP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}\mathbb{P}}<^>3$$\end{document} and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document} that either contain finite or infinite twistor fibers. The survey also touches on cubic surfaces in CP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}\mathbb{P}}<^>3$$\end{document} and their counterparts in F,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}},$$\end{document} where the configurations of twistor fibers lead to intriguing results. Special attention is given to surfaces of twistor degree 2, including how their geometry and singularities interact with twistor projections. In particular, we discuss smooth and singular surfaces in F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document} of bidegree (1, 1) and (0, 2), as well as their discriminant loci.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] PROJECTIVE GEOMETRY, LAGRANGIAN SUBSPACES, AND TWISTOR THEORY
    CAMPBELL, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1979, 18 (01) : 9 - 15
  • [2] TWISTOR GEOMETRY
    VANDENBROEK, PM
    HELVETICA PHYSICA ACTA, 1984, 57 (04): : 429 - 458
  • [3] RELATIVE COHOMOLOGY AND PROJECTIVE TWISTOR DIAGRAMS
    HUGGETT, SA
    SINGER, MA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (01) : 41 - 57
  • [4] The twistor structure of the biquaternionic projective point
    Alfonso F. Agnew
    Advances in Applied Clifford Algebras, 2003, 13 (2) : 231 - 240
  • [5] Twistor geometry of the Flag manifold
    Altavilla, Amedeo
    Ballico, Edoardo
    Brambilla, Maria Chiara
    Salamon, Simon
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (01)
  • [6] Twistor geometry of the Flag manifold
    Amedeo Altavilla
    Edoardo Ballico
    Maria Chiara Brambilla
    Simon Salamon
    Mathematische Zeitschrift, 2023, 303
  • [7] Twistor Operators in Symplectic Geometry
    Svatopluk Krýsl
    Advances in Applied Clifford Algebras, 2022, 32
  • [8] Twistor geometry of light rays
    Penrose, R.
    Classical and Quantum Gravity, 14 (1/A):
  • [9] Twistor geometry of light rays
    Penrose, R
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) : A299 - A323
  • [10] Twistor Geometry and Gauge Fields
    Sergeev, Armen
    GEOMETRIC METHODS IN PHYSICS XXXVII, 2020, : 240 - 245