共 50 条
Projective techniques in twistor geometry
被引:0
|作者:
Altavilla, Amedeo
[1
]
机构:
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
来源:
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA
|
2025年
关键词:
Twistor geometry;
Flag manifolds;
Bidegree surfaces;
Discriminant loci;
Conic classification;
Unitary transformations;
ORTHOGONAL COMPLEX STRUCTURES;
DISCRIMINANT LOCUS;
SURFACES;
IMMERSIONS;
SPACE;
D O I:
10.1007/s40574-025-00469-4
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
This survey explores the interplay between twistor geometry and projective geometry, focusing on their applications to algebraic surfaces. We explore two main topics: the inclusion of twistor fibers and lines in these surfaces, and the behavior of twistor discriminant loci, with a particular focus on degree-2 surfaces. The study highlights contributions from Ballico and collaborators, comparing the twistor spaces of CP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}\mathbb{P}}<^>3$$\end{document} and the flag threefold F,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}},$$\end{document} which reveal fascinating contrasts and parallels. Key findings include a detailed analysis of surfaces in CP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}\mathbb{P}}<^>3$$\end{document} and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document} that either contain finite or infinite twistor fibers. The survey also touches on cubic surfaces in CP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}\mathbb{P}}<^>3$$\end{document} and their counterparts in F,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}},$$\end{document} where the configurations of twistor fibers lead to intriguing results. Special attention is given to surfaces of twistor degree 2, including how their geometry and singularities interact with twistor projections. In particular, we discuss smooth and singular surfaces in F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document} of bidegree (1, 1) and (0, 2), as well as their discriminant loci.
引用
收藏
页数:23
相关论文