The box integrals in momentum-twistor geometry

被引:23
|
作者
Hodges, Andrew [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Oxford OX2 6GG, England
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2013年 / 08期
关键词
Supersymmetric gauge theory; Scattering Amplitudes;
D O I
10.1007/JHEP08(2013)051
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
An account is given of how the 'box integrals', as used for one-loop calculations in massless field theory, appear in momentum-twistor geometry. Particular attention is paid to the role of compact contour integration in representing the Feynman propagator in twistor space. An explicit calculation of all the box integrals, using only elementary methods, is included.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Symbology of Feynman integrals from twistor geometries
    He, Song
    Liu, Jiahao
    Tang, Yichao
    Yang, Qinglin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (03)
  • [22] Symbology of Feynman integrals from twistor geometries
    Song He
    Jiahao Liu
    Yichao Tang
    Qinglin Yang
    Science China(Physics,Mechanics & Astronomy), 2024, (03) : 48 - 63
  • [23] Box integrals
    Bailey, D. H.
    Borwein, J. M.
    Crandall, R. E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) : 196 - 208
  • [24] On discrete differential geometry in twistor space
    Shapiro, George
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 68 : 81 - 102
  • [25] The twistor equation in Lorentzian spin geometry
    Baum, H
    Leitner, F
    MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (04) : 795 - 812
  • [26] HARMONIC SPINORS, TWISTOR AND CONFORMAL GEOMETRY
    HIJAZI, O
    LICHNEROWICZ, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (16): : 833 - 838
  • [27] The twistor equation in Lorentzian spin geometry
    Helga Baum
    Felipe Leitner
    Mathematische Zeitschrift, 2004, 247 : 795 - 812
  • [28] Cut-continuity of twistor angular momentum
    Helfer, Adam D.
    PHYSICAL REVIEW D, 2022, 106 (08)
  • [29] PRODUCT TWISTOR SPACES AND WEYL GEOMETRY
    Davidov, Johann
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (08) : 3491 - 3506
  • [30] Differential and Twistor Geometry of the Quantum Hopf Fibration
    Brain, Simon
    Landi, Giovanni
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (02) : 489 - 530