Twistor theory at fifty: from contour integrals to twistor strings

被引:37
|
作者
Atiyah, Michael [1 ,2 ]
Dunajski, Maciej [3 ]
Mason, Lionel J. [4 ]
机构
[1] Univ Edinburgh, Sch Math, Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Cambridge, Trinity Coll Cambridge, Cambridge CB2 1TQ, England
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[4] Univ Oxford, Math Inst, Andrew Wiles Bldg, Oxford OX2 6GG, England
关键词
twistor theory; instantons; self-duality; integrable systems; twistor strings; EINSTEIN-WEYL GEOMETRY; YANG-MILLS EQUATIONS; HYPER-KAHLER METRICS; SELF-DUAL METRICS; NONLINEAR GRAVITONS; HYPERKAHLER METRICS; NULL GEODESICS; CAUCHY-PROBLEM; GAUGE-THEORY; SPACES;
D O I
10.1098/rspa.2017.0530
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space-time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold-the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics-anti-self-duality equations on Yang-Mills or conformal curvature-can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang-Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang-Mills equations, and Einstein-Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose's proposal for a role of gravity in quantum collapse of a wave function.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Twistor strings, gauge theory and gravity
    Abou-Zeid, Mohab
    HIGH ENERGY PHYSICS AND APPLICATIONS, 2008, 1006 : 135 - 141
  • [2] Twistor strings with flavour
    Bedford, James
    Papageorgakis, Constantinos
    Zoubos, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (11):
  • [3] Twistor strings and supergravity
    Abou-Zeid, Mohab
    CAIRO INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS (CICHEP II), 2007, 881 : 48 - 57
  • [4] Twistor strings and supergravity
    Abou-Zeid, Mohab
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2007, 55 (5-7): : 621 - 626
  • [5] A note on twistor integrals
    Bloch, Spencer
    FEYNMAN AMPLITUDES, PERIODS AND MOTIVES, 2015, 648 : 1 - 10
  • [6] Adding flavour to twistor strings
    Bedford, J.
    Papageorgakis, C.
    Zoubos, K.
    2007 EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS, PTS 1-12, 2008, 110
  • [7] Symbology of Feynman integrals from twistor geometries
    Song He
    Jiahao Liu
    Yichao Tang
    Qinglin Yang
    Science China Physics, Mechanics & Astronomy, 2024, 67
  • [8] Theory with a twistor
    Andrew Hodges
    Nature Physics, 2013, 9 : 205 - 206
  • [9] Twistor Theory
    Porter, J.
    General Relativity and Gravitation, 27 (07):
  • [10] Symbology of Feynman integrals from twistor geometries
    He, Song
    Liu, Jiahao
    Tang, Yichao
    Yang, Qinglin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (03)