On the inhomogeneous fourth-order nonlinear Schrodinger equation

被引:29
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] UNAM, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
关键词
LONG-RANGE SCATTERING; GLOBAL EXISTENCE; LARGE TIME; ASYMPTOTICS;
D O I
10.1063/1.4929657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Cauchy problem for the inhomogeneous fourth-order nonlinear Schrodinger equations. We find the large time asymptotics of solutions to the Cauchy problem. We use the factorization technique similar to that developed for the Schrodinger equation. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Bifurcations and traveling wave solutions for a fourth-order integrable nonlinear Schrodinger equation
    Liu, Minghuan
    Zheng, Yuanguang
    [J]. OPTIK, 2022, 255
  • [32] Higher-order localized wave solutions to a coupled fourth-order nonlinear Schrodinger equation
    Song, N.
    Shang, H. J.
    Zhang, Y. F.
    Ma, W. X.
    [J]. MODERN PHYSICS LETTERS B, 2022, 36 (26N27):
  • [33] The Cauchy problem for the fourth-order Schrodinger equation in Hs
    Liu, Xuan
    Zhang, Ting
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [34] The global solution of anisotropic fourth-order Schrodinger equation
    Su, Hailing
    Guo, Cuihua
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [35] ON THE MANAGEMENT FOURTH-ORDER SCHRODINGER-HARTREE EQUATION
    Banquet, Carlos
    Villamizar-Roa, Elder J.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 865 - 889
  • [36] Scattering theory for the defocusing fourth-order Schrodinger equation
    Miao, Changxing
    Zheng, Jiqiang
    [J]. NONLINEARITY, 2016, 29 (02) : 692 - 736
  • [37] A note on the inhomogeneous fourth-order Schrödinger equation
    T. Saanouni
    R. Ghanmi
    [J]. Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [38] Modulational instability of the higher-order nonlinear Schrodinger equation with fourth-order dispersion and quintic nonlinear terms
    Hong, Woo-Pyo
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (5-6): : 225 - 234
  • [39] Nonlinear fourth-order Schrodinger equations with radial data
    Wang, Yuzhao
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2534 - 2541
  • [40] On the Cauchy problem of fourth-order nonlinear Schrodinger equations
    Guo, Ai
    Cui, Shangbin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (12) : 2911 - 2930