The Cauchy problem for the fourth-order Schrodinger equation in Hs

被引:3
|
作者
Liu, Xuan [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
GLOBAL WELL-POSEDNESS; DISPERSION; SCATTERING;
D O I
10.1063/5.0045390
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the fourth-order Schrodinger equation i partial derivative(t)u + Delta(2)u + mu Delta u + lambda|u|(alpha)u = 0 in H-s(R-N), with N >= 1,lambda is an element of C, mu = +/- 1 or 0, 0 < s < 4, 0 < alpha, and (N - 2s)alpha < 8. We establish the local well-posedness result in H-s(R-N) by applying Banach's fixed-point argument in spaces of fractional time and space derivatives. As a by-product, we extend the existing H-2 local well-posedness results to the whole range of energy subcritical powers and arbitrary lambda is an element of C. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:20
相关论文
共 50 条