Weighted Ehrhart theory and orbifold cohornology

被引:13
|
作者
Stapledon, A. [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
lattice polytope; toric stack; orbifold cohomology; Ehrhart delta-vector;
D O I
10.1016/j.aim.2008.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of a weighted delta-vector of a lattice polytope. Although the definition is motivated by motivic integration, we study weighted delta-vectors from a combinatorial perspective. We present a version of Ehrhart Reciprocity and prove a change of variables formula. We deduce a new geometric interpretation of the coefficients of the Ehrhart delta-vector. More specifically, they are sums of dimensions of orbifold cohomology groups of a toric stack. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:63 / 88
页数:26
相关论文
共 50 条
  • [1] EHRHART THEORY FOR LAWRENCE POLYTOPES AND ORBIFOLD COHOMOLOGY OF HYPERTORIC VARIETIES
    Stapledon, Alan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) : 4243 - 4253
  • [2] Weighted Ehrhart theory: Extending Stanley's nonnegativity theorem
    Bajo, Esme
    Davis, Robert
    De Loera, Jesus A.
    Garber, Alexey
    Mora, Sofia Garzon
    Jochemko, Katharina
    Yu, Josephine
    [J]. ADVANCES IN MATHEMATICS, 2024, 444
  • [3] Orbifold Gromov-Witten theory of weighted blowups
    Bohui Chen
    Cheng-Yong Du
    Rui Wang
    [J]. Science China Mathematics, 2020, 63 (12) : 2475 - 2522
  • [4] Orbifold Gromov-Witten theory of weighted blowups
    Chen, Bohui
    Du, Cheng-Yong
    Wang, Rui
    [J]. SCIENCE CHINA-MATHEMATICS, 2020, 63 (12) : 2475 - 2522
  • [5] Orbifold Gromov-Witten theory of weighted blowups
    Bohui Chen
    Cheng-Yong Du
    Rui Wang
    [J]. Science China Mathematics, 2020, 63 : 2475 - 2522
  • [6] Equivariant Ehrhart theory
    Stapledon, Alan
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (04) : 3622 - 3654
  • [7] On orbifold theory
    Dong, Chongying
    Ren, Li
    Xu, Feng
    [J]. ADVANCES IN MATHEMATICS, 2017, 321 : 1 - 30
  • [8] Universal inequalities in Ehrhart theory
    Balletti, Gabriele
    Higashitani, Akihiro
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2018, 227 (02) : 843 - 859
  • [9] Universal inequalities in Ehrhart theory
    Gabriele Balletti
    Akihiro Higashitani
    [J]. Israel Journal of Mathematics, 2018, 227 : 843 - 859
  • [10] Techniques in Equivariant Ehrhart Theory
    Elia, Sophia
    Kim, Donghyun
    Supina, Mariel
    [J]. ANNALS OF COMBINATORICS, 2024, 28 (03) : 819 - 870