On orbifold theory

被引:53
|
作者
Dong, Chongying [1 ,2 ]
Ren, Li [1 ]
Xu, Feng [3 ,4 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[3] Foshan Univ, Dept Math, Foshang 528000, Peoples R China
[4] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
Vertex operator algebra; Orbifold theory; VERTEX OPERATOR-ALGEBRAS; TWISTED REPRESENTATIONS; MODULAR-INVARIANCE; CATEGORIES; EXTENSIONS; REGULARITY; PRODUCT;
D O I
10.1016/j.aim.2017.09.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a simple vertex operator algebra and G a finite automorphism group of V such that V-G is regular. It is proved that every irreducible V-G-module occurs in an irreducible g-twisted V-module for some g is an element of G. Moreover, the quantum dimensions of irreducible V-G-modules are determined and a global dimension formula for V in terms of twisted modules is obtained. In particular, the orbifold theory conjecture is completely solved if G is solvable. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
  • [1] Orbifold quasimap theory
    Cheong, Daewoong
    Ciocan-Fontanine, Ionut
    Kim, Bumsig
    [J]. MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 777 - 816
  • [2] Orbifold quasimap theory
    Daewoong Cheong
    Ionuţ Ciocan-Fontanine
    Bumsig Kim
    [J]. Mathematische Annalen, 2015, 363 : 777 - 816
  • [3] Orbifold spectral theory
    Farsi, C
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (01) : 215 - 235
  • [4] Super orbifold theory
    Dong, Chongying
    Ren, Li
    Yang, Meiling
    [J]. ADVANCES IN MATHEMATICS, 2022, 405
  • [5] A New Cohomology Theory of Orbifold
    Weimin Chen
    Yongbin Ruan
    [J]. Communications in Mathematical Physics, 2004, 248 : 1 - 31
  • [6] CONGRUENCE PROPERTY IN ORBIFOLD THEORY
    Dong, Chongying
    Ren, Li
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 497 - 506
  • [7] Orbifold compactifications of string theory
    Bailin, D
    Love, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 315 (4-5): : 285 - 408
  • [8] A new cohomology theory of orbifold
    Chen, WM
    Ruan, YB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (01) : 1 - 31
  • [9] Weighted Ehrhart theory and orbifold cohornology
    Stapledon, A.
    [J]. ADVANCES IN MATHEMATICS, 2008, 219 (01) : 63 - 88
  • [10] New duality transformations in orbifold theory
    De Boer, J
    Evslin, J
    Halpern, MB
    Wang, JE
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (09): : 1297 - 1344