Orbifold Gromov-Witten theory of weighted blowups

被引:7
|
作者
Chen, Bohui [1 ,2 ]
Du, Cheng-Yong [3 ,4 ]
Wang, Rui [5 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Yangtze Ctr Math, Chengdu 610064, Peoples R China
[3] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
[4] Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610068, Peoples R China
[5] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
orbifold Gromov-Witten theory; Leray-Hirsch result; weighted projective bundle; weighted blowup; root stack; blowup along complete intersection; MODULI SPACES; LOCALIZATION; INVARIANTS; CURVES;
D O I
10.1007/s11425-020-1774-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a compact symplectic sub-orbifold groupoid S of a compact symplectic orbifold groupoid (X,omega). Let X(a)be the weight-a blowup of X along S, and D-a= PN(a)be the exceptional divisor, where N is the normal bundle of S in X. In this paper we show that the absolute orbifold Gromov-Witten theory ofX(alpha)can be effectively and uniquely reconstructed from the absolute orbifold Gromov-Witten theories of X, S and D-alpha, the natural restriction homomorphismH*(CR)(X) -> H*(CR)(S) and the first Chern class of the tautological line bundle over D-alpha. To achieve this we first prove similar results for the relative orbifold Gromov-Witten theories of (X-alpha| D-alpha) and (N-alpha| D-alpha). As applications of these results, we prove an orbifold version of a conjecture of Maulik and Pandharipande (Topology, 2006) on the Gromov-Witten theory of blowups along complete intersections, a conjecture on the Gromov-Witten theory of root constructions and a conjecture on the Leray-Hirsch result for the orbifold Gromov-Witten theory of Tseng and You (J Pure Appl Algebra, 2016).
引用
收藏
页码:2475 / 2522
页数:48
相关论文
共 50 条
  • [1] Orbifold Gromov-Witten theory of weighted blowups
    Bohui Chen
    Cheng-Yong Du
    Rui Wang
    [J]. Science China Mathematics, 2020, 63 : 2475 - 2522
  • [2] Orbifold Gromov-Witten theory of weighted blowups
    Bohui Chen
    Cheng-Yong Du
    Rui Wang
    [J]. Science China Mathematics, 2020, 63 (12) : 2475 - 2522
  • [3] On Virasoro Constraints for Orbifold Gromov-Witten Theory
    Jiang, Yunfeng
    Tseng, Hsian-Hua
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (04) : 756 - 781
  • [4] On orbifold Gromov-Witten theory in codimension one
    Tseng, Hsian-Hua
    You, Fenglong
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (10) : 3567 - 3571
  • [5] On orbifold Gromov-Witten classes
    Tseng, Hsian-Hua
    [J]. PORTUGALIAE MATHEMATICA, 2022, 79 (3-4) : 395 - 403
  • [6] Orbifold Gromov-Witten theory of the symmetric product of Ar
    Cheong, Wan Keng
    Gholampour, Amin
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (01) : 475 - U1600
  • [7] On the polynomiality of orbifold Gromov-Witten theory of root stacks
    Tseng, Hsian-Hua
    You, Fenglong
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 235 - 246
  • [8] STACKY GKM GRAPHS AND ORBIFOLD GROMOV-WITTEN THEORY
    Liu, Chiu-Chu Melissa
    Sheshmani, Artan
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (05) : 855 - 902
  • [9] TWISTED ORBIFOLD GROMOV-WITTEN INVARIANTS
    Tonita, Valentin
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2014, 213 : 141 - 187
  • [10] Relative and orbifold Gromov-Witten invariants
    Abramovich, Dan
    Cadman, Charles
    Wise, Jonathan
    [J]. ALGEBRAIC GEOMETRY, 2017, 4 (04): : 472 - 500