Orbifold Gromov-Witten theory of weighted blowups

被引:7
|
作者
Chen, Bohui [1 ,2 ]
Du, Cheng-Yong [3 ,4 ]
Wang, Rui [5 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Yangtze Ctr Math, Chengdu 610064, Peoples R China
[3] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
[4] Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610068, Peoples R China
[5] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
orbifold Gromov-Witten theory; Leray-Hirsch result; weighted projective bundle; weighted blowup; root stack; blowup along complete intersection; MODULI SPACES; LOCALIZATION; INVARIANTS; CURVES;
D O I
10.1007/s11425-020-1774-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a compact symplectic sub-orbifold groupoid S of a compact symplectic orbifold groupoid (X,omega). Let X(a)be the weight-a blowup of X along S, and D-a= PN(a)be the exceptional divisor, where N is the normal bundle of S in X. In this paper we show that the absolute orbifold Gromov-Witten theory ofX(alpha)can be effectively and uniquely reconstructed from the absolute orbifold Gromov-Witten theories of X, S and D-alpha, the natural restriction homomorphismH*(CR)(X) -> H*(CR)(S) and the first Chern class of the tautological line bundle over D-alpha. To achieve this we first prove similar results for the relative orbifold Gromov-Witten theories of (X-alpha| D-alpha) and (N-alpha| D-alpha). As applications of these results, we prove an orbifold version of a conjecture of Maulik and Pandharipande (Topology, 2006) on the Gromov-Witten theory of blowups along complete intersections, a conjecture on the Gromov-Witten theory of root constructions and a conjecture on the Leray-Hirsch result for the orbifold Gromov-Witten theory of Tseng and You (J Pure Appl Algebra, 2016).
引用
收藏
页码:2475 / 2522
页数:48
相关论文
共 50 条
  • [31] Logarithmic Gromov-Witten theory with expansions
    Ranganathan, Dhruv
    [J]. ALGEBRAIC GEOMETRY, 2022, 9 (06): : 714 - 761
  • [32] The local Gromov-Witten theory of curves
    Bryan, Jim
    Pandharipande, Rahul
    Bryan, Jim
    Faber, C.
    Okounkov, A.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (01) : 101 - 136
  • [33] Hedge integrals and Gromov-Witten theory
    Faber, C
    Pandharipande, R
    [J]. INVENTIONES MATHEMATICAE, 2000, 139 (01) : 173 - 199
  • [34] Gromov-Witten theory of An-resolutions
    Maulik, Davesh
    [J]. GEOMETRY & TOPOLOGY, 2009, 13 : 1729 - 1773
  • [35] Gromov-Witten theory and invariants of matroids
    Ranganathan, Dhruv
    Usatine, Jeremy
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (04):
  • [36] Gromov-Witten theory of product stacks
    Andreini, Elena
    Jiang, Yunfeng
    Tseng, Hsian-Hua
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (02) : 223 - 277
  • [37] Notes on Axiomatic Gromov-Witten theory and applications
    Lee, Y. -P.
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 309 - 323
  • [38] Gromov-Witten theory, Hurwitz theory, and completed cycles
    Okounkov, A.
    Pandharipande, R.
    [J]. ANNALS OF MATHEMATICS, 2006, 163 (02) : 517 - 560
  • [39] Gauged Gromov-Witten theory for small spheres
    Gonzalez, Eduardo
    Woodward, Chris
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (1-2) : 485 - 514
  • [40] Gromov-Witten Theory of Toric Birational Transformations
    Acosta, Pedro
    Shoemaker, Mark
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (20) : 7037 - 7072