Equivariant Ehrhart theory

被引:11
|
作者
Stapledon, Alan [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Lattice polytopes; Toric varieties; Group actions on varieties; COHOMOLOGY; CLASSIFICATION; FORMULA; POINTS;
D O I
10.1016/j.aim.2010.10.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by representation theory and geometry, we introduce and develop an equivariant generalization of Ehrhart theory, the study of lattice points in dilations of lattice polytopes. We prove representation-theoretic analogues of numerous classical results, and give applications to the Ehrhart theory of rational polytopes and centrally symmetric polytopes. We also recover a character formula of Procesi, Dolgachev, Lunts and Stembridge for the action of a Weyl group on the cohomology of a tone variety associated to a root system. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3622 / 3654
页数:33
相关论文
共 50 条
  • [1] Techniques in Equivariant Ehrhart Theory
    Elia, Sophia
    Kim, Donghyun
    Supina, Mariel
    [J]. ANNALS OF COMBINATORICS, 2024, 28 (03) : 819 - 870
  • [2] THE EQUIVARIANT EHRHART THEORY OF THE PERMUTAHEDRON
    Ardila, Federico
    Supina, Mariel
    Vindas-Melendez, Andres R.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (12) : 5091 - 5107
  • [3] THE EQUIVARIANT EHRHART THEORY OF POLYTOPES WITH ORDER-TWO SYMMETRIES
    Clarke, Oliver
    Higashitani, Akihiro
    Kolbl, Max
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (09) : 4027 - 4041
  • [4] Universal inequalities in Ehrhart theory
    Balletti, Gabriele
    Higashitani, Akihiro
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2018, 227 (02) : 843 - 859
  • [5] Universal inequalities in Ehrhart theory
    Gabriele Balletti
    Akihiro Higashitani
    [J]. Israel Journal of Mathematics, 2018, 227 : 843 - 859
  • [6] Additive Number Theory and Inequalities in Ehrhart Theory
    Stapledon, Alan
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (05) : 1497 - 1540
  • [7] Weighted Ehrhart theory and orbifold cohornology
    Stapledon, A.
    [J]. ADVANCES IN MATHEMATICS, 2008, 219 (01) : 63 - 88
  • [8] Tropical Ehrhart theory and tropical volume
    Loho, Georg
    Schymura, Matthias
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2020, 7 (04)
  • [9] Tropical Ehrhart theory and tropical volume
    Georg Loho
    Matthias Schymura
    [J]. Research in the Mathematical Sciences, 2020, 7
  • [10] Equivariant cohomology and equivariant intersection theory
    Brion, M
    [J]. REPRESENTATION THEORIES AND ALGEBRAIC GEOMETRY, 1998, 514 : 1 - 37