MIMO tracking control of LTI systems: A geometric approach

被引:1
|
作者
Padula, Fabrizio [1 ]
Ntogramatzidis, Lorenzo [1 ]
Garone, Emanuele [2 ]
机构
[1] Curtin Univ, Dept Math & Stat, Perth, WA, Australia
[2] Univ Libre Bruxelles, Dept SAAS, Brussels, Belgium
基金
澳大利亚研究理事会;
关键词
EIGENSTRUCTURE ASSIGNMENT; MULTIVARIABLE SYSTEMS; FEEDBACK; STATE;
D O I
10.1016/j.sysconle.2019.02.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the tracking problem of constant references for multiple-input multiple-output linear time-invariant systems. We provide necessary and sufficient conditions for the solvability of the problem under the minimal set of assumptions that guarantee the well-posedness of every control problem requiring stability. Our approach allows to solve tracking problems for systems which are possibly nonright-invertible, simply (not asymptotically) stabilizable, and possibly with invariant zeros at the origin. Our methodology is constructive and results in the design of a stabilizing feedback matrix and a feedforward signal which solve the problem. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 20
页数:13
相关论文
共 50 条
  • [1] Squaring down LTI systems: A geometric approach
    Ntogramatzidis, Lorenzo
    Prattichizzo, Domenico
    [J]. SYSTEMS & CONTROL LETTERS, 2007, 56 (03) : 236 - 244
  • [2] Adaptive switching control of LTI MIMO systems using a family of controllers approach
    Chang, MH
    Davison, EJ
    [J]. AUTOMATICA, 1999, 35 (03) : 453 - 465
  • [3] SIMULTANEOUS STABILIZATION AND CONSTANT REFERENCE TRACKING OF LTI, MIMO SYSTEMS
    Guendes, A. N.
    Nanjangud, A.
    [J]. ASIAN JOURNAL OF CONTROL, 2013, 15 (04) : 1001 - 1010
  • [4] Simultaneous Stabilization and Step Tracking for MIMO Systems with LTI Controllers
    Guendes, A. N.
    Nanjangud, A.
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 1565 - 1570
  • [5] Integral control stabilizing LTI MIMO square systems
    Flores, M. A.
    Galindo, R.
    [J]. 2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 256 - 259
  • [6] Constrained Minimum Variance Control of Nonsquare LTI MIMO Systems
    Hunek, Wojciech P.
    Latawiec, Krzysztof J.
    Lukaniszyn, Marian
    Gawdzik, Andrzej
    [J]. 2010 15TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2010, : 365 - 370
  • [7] Output Feedback Reset Control of General MIMO LTI Systems
    Yuan, Chengzhi
    Wu, Fen
    [J]. 2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 2334 - 2339
  • [8] A Non-Iterative Approach to Direct Data-Driven Control Design of MIMO LTI Systems
    Abuabiah, Mohammad
    Cerone, Vito
    Pirrera, Simone
    Regruto, Diego
    [J]. IEEE ACCESS, 2023, 11 : 121671 - 121687
  • [9] A geometric approach to constrained tracking control
    Garone, Emanuele
    Ntogramatzidis, Lorenzo
    Padula, Fabrizio
    [J]. 2016 AUSTRALIAN CONTROL CONFERENCE (AUCC), 2016, : 48 - 53
  • [10] On the Zero-Dynamics of a Class of Hybrid LTI Systems: A Geometric Approach
    Mattioni, Mattia
    Monaco, Salvatore
    Normand-Cyrot, Dorothee
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 703 - 708