Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation

被引:43
|
作者
Gepreel, Khaled A. [1 ,2 ]
Mohamed, Mohamed S. [2 ,3 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
[2] Taif Univ, Dept Math, Fac Sci, At Taif, Saudi Arabia
[3] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Cairo, Egypt
关键词
homotopy analysis method; nonlinear space-time fractional Klein-Gordon equation; Caputo derivative; ADOMIAN DECOMPOSITION; DIFFERENTIAL-EQUATION; ORDER;
D O I
10.1088/1674-1056/22/1/010201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives Klein-Gordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A NONLINEAR KLEIN-GORDON EQUATION
    SCOTT, AC
    [J]. AMERICAN JOURNAL OF PHYSICS, 1969, 37 (01) : 52 - &
  • [32] Nonlinear Klein-Gordon equation
    Adomian, G
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 9 - 10
  • [33] A Fully Discrete Spectral Method for the Nonlinear Time Fractional Klein-Gordon Equation
    Chen, Hu
    Lu, Shujuan
    Chen, Wenping
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (01): : 231 - 251
  • [34] Numerical analysis for Klein-Gordon equation with time-space fractional derivatives
    Zhang, Jun
    Wang, JinRong
    Zhou, Yong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3689 - 3700
  • [35] An Efficient Computational Method for the Time-Space Fractional Klein-Gordon Equation
    Singh, Harendra
    Kumar, Devendra
    Pandey, Ram K.
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [36] Novel Solution for Time-fractional Klein-Gordon Equation with Different Applications
    Kashyap, Manju
    Singh, S. Pratap
    Gupta, Surbhi
    Mehta, Purnima Lala
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2023, 8 (03) : 537 - 546
  • [37] On the solution behavior of a nonlinear time-fractional Klein-Gordon equation: Theoretical study and numerical validation
    Bentrcia, Toufik
    Mennouni, Abdelaziz
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [38] A SHARP BILINEAR ESTIMATE FOR THE KLEIN-GORDON EQUATION IN ARBITRARY SPACE-TIME DIMENSIONS
    Jeavons, Chris
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 137 - 156
  • [39] Analytical solution for the dynamics and optimization of fractional Klein-Gordon equation: an application to quantum particle
    Abro, Kashif Ali
    Siyal, Ambreen
    Atangana, Abdon
    Al-Mdallal, Qasem M.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (08)
  • [40] STABILITY STUDY OF A MODEL FOR THE KLEIN-GORDON EQUATION IN KERR SPACE-TIME II
    Reinhard Beyer, Horst
    Alcubierre, Miguel
    Megevand, Miguel
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 115 - 143