Numerical analysis for Klein-Gordon equation with time-space fractional derivatives

被引:3
|
作者
Zhang, Jun [1 ,2 ]
Wang, JinRong [1 ,3 ]
Zhou, Yong [4 ,5 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ Finance & Econ, Computat Math Res Ctr, Guiyang, Guizhou, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu, Shandong, Peoples R China
[4] Xiangtan Univ, Dept Math, Xiangtan, Peoples R China
[5] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo derivative; error estimate; Klein-Gordon equation; spectral method; SPECTRAL METHOD; ANOMALOUS DIFFUSION; DIFFERENCE SCHEME; RANDOM-WALKS; APPROXIMATION; MODELS; CAHN;
D O I
10.1002/mma.6147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze two numerical schemes for solving a nonlinear Klein-Gordon equation with time-space fractional derivatives. Numerical methods are base on finite difference scheme in fractional derivative and Fourier-spectral method in spatial variable. It is proved that the linearized method is conditionally stable while the nonlinearized one is unconditionally stable. In addition, the error estimate shows that the linearized method is in the order of O(Delta t+N beta-r), and the nonlinearized method converge with the order O(Delta t3-alpha+N beta-r), where Delta t, N, beta, and r are, respectively, step of time, polynomial degree, the fractional derivative in space, and regularity of u. Some numerical experiments are performed to demonstrate the theoretical results.
引用
收藏
页码:3689 / 3700
页数:12
相关论文
共 50 条
  • [1] An Efficient Computational Method for the Time-Space Fractional Klein-Gordon Equation
    Singh, Harendra
    Kumar, Devendra
    Pandey, Ram K.
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [2] Space-time fractional Klein-Gordon equation: Symmetry analysis, conservation laws and numerical approximations
    Mohammadizadeh, Fatemeh
    Rashidi, Saeede
    Hejazi, S. Reza
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 188 : 476 - 497
  • [3] Analytical approach for space-time fractional Klein-Gordon equation
    Unsal, Omer
    Guner, Ozkan
    Bekir, Ahmet
    [J]. OPTIK, 2017, 135 : 337 - 345
  • [4] A reliable numerical algorithm for the fractional klein-gordon equation
    Singh, Jagdev
    Singh, Harendra
    Kumar, Devendra
    Singh, C.S.
    [J]. Engineering Transactions, 2019, 67 (01): : 21 - 34
  • [5] Time-space pseudospectral algorithm for numerical solution of Sine/Klein-Gordon equations
    Mittal, A. K.
    Balyan, L. K.
    [J]. ADVANCES IN BASIC SCIENCES (ICABS 2019), 2019, 2142
  • [6] Numerical estimation of the fractional Klein-Gordon equation with Discrete
    Partohaghighi, Mohammad
    Mortezaee, Marzieh
    Akgul, Ali
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 90 : 44 - 53
  • [7] Nonlinear dynamical analysis of a time-fractional Klein-Gordon equation
    El-Dib, Yusry O.
    Elgazery, Nasser S.
    Mady, Amal A.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (04):
  • [8] Fractal-fractional Klein-Gordon equation: A numerical study
    Partohaghighi, Mohammad
    Mirtalebi, Zahrasadat
    Akgul, Ali
    Riaz, Muhammad Bilal
    [J]. RESULTS IN PHYSICS, 2022, 42
  • [9] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    [J]. SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [10] Klein-Gordon equation in curved space-time
    Lehn, R. D.
    Chabysheva, S. S.
    Hiller, J. R.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (04)