Numerical analysis for Klein-Gordon equation with time-space fractional derivatives

被引:3
|
作者
Zhang, Jun [1 ,2 ]
Wang, JinRong [1 ,3 ]
Zhou, Yong [4 ,5 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ Finance & Econ, Computat Math Res Ctr, Guiyang, Guizhou, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu, Shandong, Peoples R China
[4] Xiangtan Univ, Dept Math, Xiangtan, Peoples R China
[5] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo derivative; error estimate; Klein-Gordon equation; spectral method; SPECTRAL METHOD; ANOMALOUS DIFFUSION; DIFFERENCE SCHEME; RANDOM-WALKS; APPROXIMATION; MODELS; CAHN;
D O I
10.1002/mma.6147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze two numerical schemes for solving a nonlinear Klein-Gordon equation with time-space fractional derivatives. Numerical methods are base on finite difference scheme in fractional derivative and Fourier-spectral method in spatial variable. It is proved that the linearized method is conditionally stable while the nonlinearized one is unconditionally stable. In addition, the error estimate shows that the linearized method is in the order of O(Delta t+N beta-r), and the nonlinearized method converge with the order O(Delta t3-alpha+N beta-r), where Delta t, N, beta, and r are, respectively, step of time, polynomial degree, the fractional derivative in space, and regularity of u. Some numerical experiments are performed to demonstrate the theoretical results.
引用
收藏
页码:3689 / 3700
页数:12
相关论文
共 50 条
  • [21] Fractional Klein-Gordon equation with singular mass
    Altybay, Arshyn
    Ruzhansky, Michael
    Sebih, Mohammed Elamine
    Tokmagambetov, Niyaz
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 143
  • [22] Analytical solutions for the fractional Klein-Gordon equation
    Kheiri, Hosseni
    Shahi, Samane
    Mojaver, Aida
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 99 - 114
  • [23] Analytic solutions of the space-time conformable fractional Klein-Gordon equation in general form
    Culha, Sevil
    Dascioglu, Aysegul
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (04) : 775 - 790
  • [24] Stability analysis and a numerical scheme for fractional Klein-Gordon equations
    Khan, Hasib
    Khan, Aziz
    Chen, Wen
    Shah, Kamal
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (02) : 723 - 732
  • [25] Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel
    Saifullah, Sayed
    Ali, Amir
    Khan, Zareen A.
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 5275 - 5290
  • [26] Analytical study of time-fractional order Klein-Gordon equation
    Tamsir, Mohammad
    Srivastava, Vineet K.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (01) : 561 - 567
  • [27] ANALYSIS OF 4 NUMERICAL SCHEMES FOR A NONLINEAR KLEIN-GORDON EQUATION
    JIMENEZ, S
    VAZQUEZ, L
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1990, 35 (01) : 61 - 94
  • [28] Numerical Solution of A Linear Klein-Gordon Equation
    Kasron, Noraini
    Nasir, Mohd Agos Salim
    Yasiran, Siti Salmah
    Othman, Khairil Iskandar
    [J]. 2013 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND SYSTEM ENGINEERING (ICEESE), 2013, : 74 - 78
  • [29] Numerical solution of the nonlinear Klein-Gordon equation
    Rashidinia, J.
    Ghasemi, M.
    Jalilian, R.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1866 - 1878
  • [30] On the standing wave in coupled fractional Klein-Gordon equation
    Guo, Zhenyu
    Zhang, Xin
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (03) : 405 - 421