On the standing wave in coupled fractional Klein-Gordon equation

被引:0
|
作者
Guo, Zhenyu [1 ]
Zhang, Xin [2 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
[2] Tongliao New City 1 Middle Sch, Tongliao 028000, Peoples R China
关键词
Standing wave; ground state; fractional Klein-Gordon equations; GLOBAL EXISTENCE; NONEXISTENCE; INSTABILITY; SCHRODINGER; REGULARITY; STABILITY; SYSTEM;
D O I
10.1515/gmj-2023-2089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to deal with the standing wave problems in coupled nonlinear fractional Klein-Gordon equations. First, we establish the constrained minimizations for a single nonlinear fractional Laplace equation. Then we prove the existence of a standing wave with a ground state using a variational argument. Next, applying the potential well argument and the concavity method, we obtain the sharp criterion for blowing up and global existence. Finally, we show the instability of the standing wave.
引用
收藏
页码:405 / 421
页数:17
相关论文
共 50 条
  • [1] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    [J]. SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [3] On the Orbital Stability of Standing-Wave Solutions to a Coupled Non-Linear Klein-Gordon Equation
    Garrisi, Daniele
    [J]. ADVANCED NONLINEAR STUDIES, 2012, 12 (03) : 639 - 658
  • [4] Orbitally stable standing-wave solutions to a coupled non-linear Klein-Gordon equation
    Garrisi, Daniele
    [J]. NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 387 - 398
  • [5] Fractional Klein-Gordon equation with singular mass
    Altybay, Arshyn
    Ruzhansky, Michael
    Sebih, Mohammed Elamine
    Tokmagambetov, Niyaz
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 143
  • [6] NEW FRACTAL SOLITON SOLUTIONS FOR THE COUPLED FRACTIONAL KLEIN-GORDON EQUATION WITH β-FRACTIONAL DERIVATIVE
    Wang, Kangle
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (01)
  • [7] Analytical solutions for the fractional Klein-Gordon equation
    Kheiri, Hosseni
    Shahi, Samane
    Mojaver, Aida
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 99 - 114
  • [8] ON THE INVERSION PROBLEM FOR A KLEIN-GORDON WAVE EQUATION
    DEALFARO, V
    [J]. NUOVO CIMENTO, 1958, 10 (04): : 675 - 681
  • [9] EXISTENCE OF WAVE OPERATORS FOR KLEIN-GORDON EQUATION
    ECKARDT, KJ
    [J]. MANUSCRIPTA MATHEMATICA, 1976, 18 (01) : 43 - 55
  • [10] A reliable numerical algorithm for the fractional klein-gordon equation
    Singh, Jagdev
    Singh, Harendra
    Kumar, Devendra
    Singh, C.S.
    [J]. Engineering Transactions, 2019, 67 (01): : 21 - 34