Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation

被引:43
|
作者
Gepreel, Khaled A. [1 ,2 ]
Mohamed, Mohamed S. [2 ,3 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
[2] Taif Univ, Dept Math, Fac Sci, At Taif, Saudi Arabia
[3] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Cairo, Egypt
关键词
homotopy analysis method; nonlinear space-time fractional Klein-Gordon equation; Caputo derivative; ADOMIAN DECOMPOSITION; DIFFERENTIAL-EQUATION; ORDER;
D O I
10.1088/1674-1056/22/1/010201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives Klein-Gordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] STABILITY STUDY OF A MODEL FOR THE KLEIN-GORDON EQUATION IN KERR SPACE-TIME II
    Reinhard Beyer, Horst
    Alcubierre, Miguel
    Megevand, Miguel
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 115 - 143
  • [42] STATISTICAL INTERPRETATION OF THE KLEIN-GORDON EQUATION IN TERMS OF THE SPACE-TIME WEYL CURVATURE
    SANTAMATO, E
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (08) : 2477 - 2480
  • [43] Nonlinear Klein-Gordon equation pulsons with a fractional power potential
    Salimov, R. K.
    Ekomasov, E. G.
    [J]. LETTERS ON MATERIALS, 2016, 6 (01): : 43 - 45
  • [44] Klein-Gordon Oscillator in a Topologically Nontrivial Space-Time
    Santos, L. C. N.
    Mota, C. E.
    Barros, C. C., Jr.
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2019, 2019
  • [45] SPACE-TIME ATTRACTORS IN PERTURBED KLEIN-GORDON EQUATIONS
    GONZALEZ, JA
    [J]. REVISTA MEXICANA DE FISICA, 1992, 38 (02) : 205 - 214
  • [46] A METHOD FOR GENERATING ANALYTICAL SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATION
    GRIGOROV, A
    OUROUSHEV, D
    [J]. PHYSICS LETTERS A, 1993, 183 (04) : 289 - 292
  • [47] PARTLY ANALYTICAL PARTICLE-LIKE SOLUTION IN A NONLINEAR MODEL OF KLEIN-GORDON EQUATION
    KUMAR, A
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1977, (01): : 124 - 126
  • [48] Approximate Analytical Solutions of the Klein-Gordon Equation with Generalized Morse Potential
    Ikot, A. N.
    Okorie, U. S.
    Rampho, G. J.
    Amadi, P. O.
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2020, 42 (01)
  • [49] ANALYTICAL INSTABILITY OF THE KLEIN-GORDON EQUATION
    CLOOT, AHJ
    HERBST, BM
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 21 (01) : 17 - 26
  • [50] Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel
    Saifullah, Sayed
    Ali, Amir
    Khan, Zareen A.
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 5275 - 5290