Interpreting Change in Quantitative Imaging Biomarkers

被引:19
|
作者
Obuchowski, Nancy A. [1 ]
机构
[1] Cleveland Clin Fdn, Quantitat Hlth Sci JJN3, 9500 Euclid Ave, Cleveland, OH 44195 USA
基金
美国国家卫生研究院;
关键词
Quantitative imaging biomarker; repeatability; repeatability coefficient; measurement error; STATISTICAL-METHODS; REPEATABILITY;
D O I
10.1016/j.acra.2017.09.023
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Quantitative imaging biomarkers (QIBs) are becoming increasingly adopted into clinical practice to monitor changes in patients' conditions. The repeatability coefficient (RC) is the clinical cut-point used to discern between changes in a biomarker's measurements due to measurement error and changes that exceed measurement error, thus indicating real change in the patient. Imaging biomarkers have characteristics that make them difficult for estimating the repeatability coefficient, including nonconstant error, non Gaussian distributions, and measurement error that must be estimated from small studies. Methods: We conducted a Monte Carlo simulation study to investigate how well three statistical methods for estimating the repeatability coefficient perform under five settings common for QIBs. Results: When the measurement error is constant and replicates are normally distributed, all of the statistical methods perform well.; When the measurement error is proportional to the true value, approaches that use the log transformation or coefficient of variation perform similarly. For other common settings, none of the methods for estimating the repeatability coefficient perform adequately. Conclusion: Many of the common approaches to estimating the repeatability coefficient perform well for only limited scenarios. The optimal approach depends strongly on the pattern of the within-subject variability; thus, a precision profile is critical in evaluating the technical performance of QIBs. Asymmetric bounds for detecting regression vs progression can be implemented and should be used when clinically appropriate.
引用
收藏
页码:372 / 379
页数:8
相关论文
共 50 条
  • [41] Multiparametric Quantitative Imaging Biomarkers for Phenotype Classification: A Framework for Development and Validation
    Delfino, Jana G.
    Pennello, Gene A.
    Barnhart, Huiman X.
    Buckler, Andrew J.
    Wang, Xiaofeng
    Huang, Erich P.
    Raunig, Dave L.
    Guimaraes, Alexander R.
    Hall, Timothy J.
    deSouza, Nandita M.
    Obuchowski, Nancy
    [J]. ACADEMIC RADIOLOGY, 2023, 30 (02) : 183 - 195
  • [42] Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment
    Raunig, David L.
    McShane, Lisa M.
    Pennello, Gene
    Gatsonis, Constantine
    Carson, Paul L.
    Voyvodic, James T.
    Wahl, Richard L.
    Kurland, Brenda F.
    Schwarz, Adam J.
    Goenen, Mithat
    Zahlmann, Gudrun
    Kondratovich, Marina V.
    O'Donnell, Kevin
    Petrick, Nicholas
    Cole, Patricia E.
    Garra, Brian
    Sullivan, Daniel C.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (01) : 27 - 67
  • [43] Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers
    Li Shen
    Paul M. Thompson
    Steven G. Potkin
    Lars Bertram
    Lindsay A. Farrer
    Tatiana M. Foroud
    Robert C. Green
    Xiaolan Hu
    Matthew J. Huentelman
    Sungeun Kim
    John S. K. Kauwe
    Qingqin Li
    Enchi Liu
    Fabio Macciardi
    Jason H. Moore
    Leanne Munsie
    Kwangsik Nho
    Vijay K. Ramanan
    Shannon L. Risacher
    David J. Stone
    Shanker Swaminathan
    Arthur W. Toga
    Michael W. Weiner
    Andrew J. Saykin
    [J]. Brain Imaging and Behavior, 2014, 8 : 183 - 207
  • [44] A Novel Knowledge Representation Framework for the Statistical Validation of Quantitative Imaging Biomarkers
    Buckler, Andrew J.
    Paik, David
    Ouellette, Matt
    Danagoulian, Jovanna
    Wernsing, Gary
    Suzek, Baris E.
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (04) : 614 - 629
  • [45] Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers
    Shen, Li
    Thompson, Paul M.
    Potkin, Steven G.
    Bertram, Lars
    Farrer, Lindsay A.
    Foroud, Tatiana M.
    Green, Robert C.
    Hu, Xiaolan
    Huentelman, Matthew J.
    Kim, Sungeun
    Kauwe, John S. K.
    Li, Qingqin
    Liu, Enchi
    Macciardi, Fabio
    Moore, Jason H.
    Munsie, Leanne
    Nho, Kwangsik
    Ramanan, Vijay K.
    Risacher, Shannon L.
    Stone, David J.
    Swaminathan, Shanker
    Toga, Arthur W.
    Weiner, Michael W.
    Saykin, Andrew J.
    [J]. BRAIN IMAGING AND BEHAVIOR, 2014, 8 (02) : 183 - 207
  • [46] Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential
    Li, Lin Z.
    Zhou, Rong
    Xu, He N.
    Moon, Lily
    Zhong, Tuoxiu
    Kim, Eun Ju
    Qiao, Hui
    Reddy, Ravinder
    Leeper, Dennis
    Chance, Britton
    Glickson, Jerry D.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (16) : 6608 - 6613
  • [47] Effect of Region of Interest Size on the Repeatability of Quantitative Brain Imaging Biomarkers
    Jafari-Khouzani, Kourosh
    Paynabar, Kamran
    Hajighasemi, Fatemeh
    Rosen, Bruce
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (03) : 864 - 872
  • [48] Systematic review of quantitative imaging biomarkers for neck and shoulder musculoskeletal disorders
    Gold, Judith E.
    Hallman, David M.
    Hellstrom, Fredrik
    Bjorklund, Martin
    Crenshaw, Albert G.
    Mathiassen, Svend Erik
    Barbe, Mary F.
    Ali, Sayed
    [J]. BMC MUSCULOSKELETAL DISORDERS, 2017, 18
  • [49] Systematic review of quantitative imaging biomarkers for neck and shoulder musculoskeletal disorders
    Judith E. Gold
    David M. Hallman
    Fredrik Hellström
    Martin Björklund
    Albert G. Crenshaw
    Svend Erik Mathiassen
    Mary F. Barbe
    Sayed Ali
    [J]. BMC Musculoskeletal Disorders, 18
  • [50] Quantitative Computed Tomography Imaging Biomarkers in the Diagnosis and Management of Lung Cancer
    Kim, Hyungjin
    Park, Chang Min
    Goo, Jin Mo
    Wildberger, Joachim E.
    Kauczor, Hans-Ulrich
    [J]. INVESTIGATIVE RADIOLOGY, 2015, 50 (09) : 571 - 583