Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment

被引:248
|
作者
Raunig, David L. [1 ]
McShane, Lisa M. [2 ]
Pennello, Gene [3 ]
Gatsonis, Constantine [4 ]
Carson, Paul L. [5 ]
Voyvodic, James T. [6 ]
Wahl, Richard L. [7 ]
Kurland, Brenda F. [8 ]
Schwarz, Adam J. [9 ]
Goenen, Mithat [10 ]
Zahlmann, Gudrun [11 ]
Kondratovich, Marina V. [3 ]
O'Donnell, Kevin [12 ]
Petrick, Nicholas [3 ]
Cole, Patricia E. [13 ]
Garra, Brian [3 ]
Sullivan, Daniel C. [14 ]
机构
[1] ICON Med Imaging, Warrington, PA 18976 USA
[2] NCI, Bethesda, MD 20892 USA
[3] US FDA, CDRH, Silver Spring, MD USA
[4] Brown Univ, Providence, RI 02912 USA
[5] Univ Michigan Hlth Syst, Ann Arbor, MI USA
[6] Duke Univ BIAC, Durham, NC USA
[7] Johns Hopkins Med Inst, Baltimore, MD 21205 USA
[8] Univ Pittsburgh, Pittsburgh, PA USA
[9] Eli Lilly & Co, Indianapolis, IN 46285 USA
[10] Mem Sloan Kettering Canc Ctr, New York, NY 10021 USA
[11] Hoffman La Roche Ltd, Basel, Switzerland
[12] Toshiba Med Res Inst, Vernon Hills, IL USA
[13] Takaeda, Deerfield, IL USA
[14] Duke Univ, Sch Med, Durham, NC 27706 USA
关键词
quantitative imaging; imaging biomarkers; reliability; linearity; bias; precision; repeatability; reproducibility; agreement; CONFIDENCE-INTERVALS; ASSESSING AGREEMENT; RELIABILITY; DEFINITIONS; COEFFICIENT; MEDICINE; POINTS;
D O I
10.1177/0962280214537344
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers to measure changes in these features. Critical to the performance of a quantitative imaging biomarker in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is therefore difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker Alliance with technical, radiological, and statistical experts developed a set of technical performance analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of quantitative imaging biomarker performance studies so that results from multiple studies can be compared, contrasted, or combined.
引用
收藏
页码:27 / 67
页数:41
相关论文
共 50 条
  • [1] Quantitative imaging biomarkers: A review of statistical methods for computer algorithm comparisons
    Obuchowski, Nancy A.
    Reeves, Anthony P.
    Huang, Erich P.
    Wang, Xiao-Feng
    Buckler, Andrew J.
    Kim, Hyun J.
    Barnhart, Huiman X.
    Jackson, Edward F.
    Giger, Maryellen L.
    Pennello, Gene
    Toledano, Alicia Y.
    Kalpathy-Cramer, Jayashree
    Apanasovich, Tatiyana V.
    Kinahan, Paul E.
    Myers, Kyle J.
    Goldgof, Dmitry B.
    Barboriak, Daniel P.
    Gillies, Robert J.
    Schwartz, Lawrence H.
    Sullivan, Daniel C.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (01) : 68 - 106
  • [2] Data transformations for variance stabilization in the statistical assessment of quantitative imaging biomarkers
    Gong, Qi
    Li, Qin
    Gavrielides, Marios A.
    Petrick, Nicholas
    [J]. MEDICAL IMAGING 2019: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2019, 10952
  • [3] A Framework for Evaluating the Technical Performance of Multiparameter Quantitative Imaging Biomarkers (mp-QIBs)
    Obuchowski, Nancy A.
    Huang, Erich
    deSouza, Nandita M.
    Raunig, David
    Delfino, Jana
    Buckler, Andrew
    Hatt, Charles
    Wang, Xiaofeng
    Moskowitz, Chaya
    Guimaraes, Alexander
    Giger, Maryellen
    Hall, Timothy J.
    Kinahan, Paul
    Pennello, Gene
    [J]. ACADEMIC RADIOLOGY, 2023, 30 (02) : 147 - 158
  • [4] Data transformations for statistical assessment of quantitative imaging biomarkers: Application to lung nodule volumetry
    Gong, Qi
    Li, Qin
    Gavrielides, Marios A.
    Petrick, Nicholas
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (09) : 2749 - 2763
  • [5] Applications of the Repeatability of Quantitative Imaging Biomarkers: A Review of Statistical Analysis of Repeat Data Sets
    Barnhart, Huiman X.
    Barboriak, Daniel P.
    [J]. TRANSLATIONAL ONCOLOGY, 2009, 2 (04): : 231 - 235
  • [6] Statistical considerations for repeatability and reproducibility of quantitative imaging biomarkers
    Ye, Shangyuan
    Lim, Jeong Youn
    Huang, Wei
    [J]. BJR OPEN, 2022, 4 (01):
  • [7] Quantitative Statistical Methods for Image Quality Assessment
    Dutta, Joyita
    Ahn, Sangtae
    Li, Quanzheng
    [J]. THERANOSTICS, 2013, 3 (10): : 741 - 756
  • [8] A review of statistical methods in imaging genetics
    Nathoo, Farouk S.
    Kong, Linglong
    Zhu, Hongtu
    Weiner, Michael W.
    Aisen, Paul
    Weiner, Michael
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, David
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Lilly, Eli
    Logovinsky, Veronika
    Green, Robert C.
    Montine, Tom
    Petersen, Ronald
    Aisen, Paul
    Jimenez, Gustavo
    Donohue, Michael
    Gessert, Devon
    Harless, Kelly
    Salazar, Jennifer
    Cabrera, Yuliana
    Walter, Sarah
    Hergesheimer, Lindsey
    Beckett, Laurel
    Harvey, Danielle
    Donohue, Michael
    Jack, Clifford R., Jr.
    Bernstein, Matthew
    Fox, Nick
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (01): : 108 - 131
  • [9] Statistical methods for assessment of added usefulness of new biomarkers
    Pencina, Michael J.
    D'Agostino, Ralph B.
    Vasan, Ramachandran S.
    [J]. CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2010, 48 (12) : 1703 - 1711
  • [10] Statistical Considerations for Planning Clinical Trials with Quantitative Imaging Biomarkers
    Obuchowski, Nancy A.
    Mozley, P. David
    Matthews, Dawn
    Buckler, Andrew
    Bullen, Jennifer
    Jackson, Edward
    [J]. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2019, 111 (01) : 19 - 26