Interpreting Change in Quantitative Imaging Biomarkers

被引:19
|
作者
Obuchowski, Nancy A. [1 ]
机构
[1] Cleveland Clin Fdn, Quantitat Hlth Sci JJN3, 9500 Euclid Ave, Cleveland, OH 44195 USA
基金
美国国家卫生研究院;
关键词
Quantitative imaging biomarker; repeatability; repeatability coefficient; measurement error; STATISTICAL-METHODS; REPEATABILITY;
D O I
10.1016/j.acra.2017.09.023
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Quantitative imaging biomarkers (QIBs) are becoming increasingly adopted into clinical practice to monitor changes in patients' conditions. The repeatability coefficient (RC) is the clinical cut-point used to discern between changes in a biomarker's measurements due to measurement error and changes that exceed measurement error, thus indicating real change in the patient. Imaging biomarkers have characteristics that make them difficult for estimating the repeatability coefficient, including nonconstant error, non Gaussian distributions, and measurement error that must be estimated from small studies. Methods: We conducted a Monte Carlo simulation study to investigate how well three statistical methods for estimating the repeatability coefficient perform under five settings common for QIBs. Results: When the measurement error is constant and replicates are normally distributed, all of the statistical methods perform well.; When the measurement error is proportional to the true value, approaches that use the log transformation or coefficient of variation perform similarly. For other common settings, none of the methods for estimating the repeatability coefficient perform adequately. Conclusion: Many of the common approaches to estimating the repeatability coefficient perform well for only limited scenarios. The optimal approach depends strongly on the pattern of the within-subject variability; thus, a precision profile is critical in evaluating the technical performance of QIBs. Asymmetric bounds for detecting regression vs progression can be implemented and should be used when clinically appropriate.
引用
收藏
页码:372 / 379
页数:8
相关论文
共 50 条
  • [31] Quantitative bone imaging biomarkers to diagnose temporomandibular joint osteoarthritis
    Bianchi, J.
    Goncalves, J. R.
    Ruellas, A. C. de Oliveira
    Ashman, L. M.
    Vimort, J-B
    Yatabe, M.
    Paniagua, B.
    Hernandez, P.
    Benavides, E.
    Soki, F. N.
    Ioshida, M.
    Cevidanes, L. H. S.
    [J]. INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2021, 50 (02) : 227 - 235
  • [32] QUANTITATIVE IMAGING BIOMARKERS IN NEUROLOGIC DISEASE: POPULATION STUDY PERSPECTIVE
    Niessen, Wiro
    Vrooman, Henri
    de Boer, Renske
    van der Lijn, Fedde
    Achterberg, Hakim
    Koek, Marcel
    Klein, Stefan
    van der Lugt, Aad
    de Bruijne, Marleen
    Ikram, Arfan
    Vernooij, Meike
    [J]. 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 911 - 911
  • [33] Emerging Quantitative Magnetic Resonance Imaging Biomarkers of Hepatic Steatosis
    Reeder, Scott B.
    [J]. HEPATOLOGY, 2013, 58 (06) : 1877 - 1880
  • [34] The Potential and Emerging Role of Quantitative Imaging Biomarkers for Cancer Characterization
    Tharmaseelan, Hishan
    Hertel, Alexander
    Rennebaum, Shereen
    Noerenberg, Dominik
    Haselmann, Verena
    Schoenberg, Stefan O.
    Froelich, Matthias F.
    [J]. CANCERS, 2022, 14 (14)
  • [35] Quantitative Predictive Imaging Biomarkers of Lumbar Intervertebral Disc Degeneration
    Vadapalli, Rammohan
    Mulukutla, Raghavdutt
    Vadapalli, Abhinav Sriram
    Vedula, Rajanikanth Rao
    [J]. ASIAN SPINE JOURNAL, 2019, 13 (04) : 527 - 534
  • [36] Erratum to: Quantitative Imaging Biomarker Ontology (QIBO) for Knowledge Representation of Biomedical Imaging Biomarkers
    Andrew J. Buckler
    Tiffany Ting Liu
    Erica Savig
    Baris E. Suzek
    Daniel L. Rubin
    David Paik
    [J]. Journal of Digital Imaging, 2013, 26 (4) : 642 - 642
  • [37] ON INTERPRETING CHANGE - REPLY
    WEINGROD, A
    [J]. AMERICAN ANTHROPOLOGIST, 1964, 66 (03) : 633 - 637
  • [38] Quantitative imaging biomarkers of coronary plaque morphology: insights from EVAPORATE
    Buckler, Andrew J.
    Doros, Gheorghe
    Kinninger, April
    Lakshmanan, Suvasini
    Le, Viet T. T.
    Libby, Peter
    May, Heidi T.
    Muhlestein, Joseph B.
    Nelson, John R.
    Nicolaou, Anna
    Roy, Sion K.
    Shaikh, Kashif
    Shekar, Chandana
    Tayek, John A.
    Zheng, Luke
    Bhatt, Deepak L.
    Budoff, Matthew J.
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [39] Quantitative visualization of immune infiltrates by multispectral imaging as predictive biomarkers in melanoma
    Jazwinska, D.
    Perez-Lorenzo, R.
    Gartrell, R.
    Clynes, R.
    Saenger, Y.
    Christiano, A. M.
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2017, 137 (05) : S135 - S135
  • [40] Noninvasive Quantitative Imaging-based Biomarkers and Lung Cancer Screening
    Schabath, Matthew B.
    Gillies, Robert J.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 192 (06) : 654 - 656