Text2Mesh: Text-Driven Neural Stylization for Meshes

被引:120
|
作者
Michel, Oscar [1 ]
Bar-On, Roi [1 ,2 ]
Liu, Richard [1 ]
Benaim, Sagie [2 ]
Hanocka, Rana [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Tel Aviv Univ, Tel Aviv, Israel
关键词
D O I
10.1109/CVPR52688.2022.01313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we develop intuitive controls for editing the style of 3D objects. Our framework, Text2Mesh, stylizes a 3D mesh by predicting color and local geometric details which conform to a target text prompt. We consider a disentangled representation of a 3D object using a fixed mesh input (content) coupled with a learned neural network, which we term a neural style field network (NSF). In order to modify style, we obtain a similarity score between a text prompt (describing style) and a stylized mesh by harnessing the representational power of CLIP. Text2Mesh requires neither a pre-trained generative model nor a specialized 3D mesh dataset. It can handle low-quality meshes (non-manifold, boundaries, etc.) with arbitrary genus, and does not require UV parameterization. We demonstrate the ability of our technique to synthesize a myriad of styles over a wide variety of 3D meshes. Our code and results are available in our project webpage: https://threedle.github.io/text2mesh/.
引用
收藏
页码:13482 / 13492
页数:11
相关论文
共 50 条
  • [21] Text2Palette: Text-Driven Color Palette Generation Using Internet Images
    Lei K.
    Liu Z.
    Xu K.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (05): : 694 - 703
  • [22] Text2City: One-Stage Text-Driven Urban Layout Regeneration
    Qin, Yiming
    Zhao, Nanxuan
    Sheng, Bin
    Lau, Rynson W. H.
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4578 - 4586
  • [23] Text-Driven Chinese Sign Language Synthesis
    徐琳
    高文
    晏洁
    Journal of Harbin Institute of Technology, 1998, (03) : 93 - 98
  • [24] Text-driven Speech Animation with Emotion Control
    Chae, Wonseok
    Kim, Yejin
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (08): : 3473 - 3487
  • [25] SceneScape: Text-Driven Consistent Scene Generation
    Fridman, Rafail
    Abecasis, Amit
    Kasten, Yoni
    Dekel, Tali
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [26] A text-driven sign language synthesis system
    Gao, W
    Xu, L
    Yin, BC
    Liu, Y
    Song, YB
    Yan, J
    Zhou, J
    Chen, HT
    FIFTH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS, VOLS 1 AND 2, 1997, : 6 - 11
  • [27] StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
    Patashnik, Or
    Wu, Zongze
    Shechtman, Eli
    Cohen-Or, Daniel
    Lischinski, Dani
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2065 - 2074
  • [28] DreamEditor: Text-Driven 3D Scene Editing with Neural Fields
    Zhuang, Jingyu
    Wang, Chen
    Lin, Liang
    Liu, Lingjie
    Li, Guanbin
    PROCEEDINGS OF THE SIGGRAPH ASIA 2023 CONFERENCE PAPERS, 2023,
  • [29] Blending-NeRF: Text-Driven Localized Editing in Neural Radiance Fields
    Song, Hyeonseop
    Choi, Seokhun
    Do, Hoseok
    Lee, Chul
    Kim, Taehyeong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 14337 - 14347
  • [30] DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation
    Lyu, Yueming
    Lin, Tianwei
    Li, Fu
    He, Dongliang
    Dong, Jing
    Tan, Tieniu
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 6894 - 6903