Text2Mesh: Text-Driven Neural Stylization for Meshes

被引:120
|
作者
Michel, Oscar [1 ]
Bar-On, Roi [1 ,2 ]
Liu, Richard [1 ]
Benaim, Sagie [2 ]
Hanocka, Rana [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Tel Aviv Univ, Tel Aviv, Israel
关键词
D O I
10.1109/CVPR52688.2022.01313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we develop intuitive controls for editing the style of 3D objects. Our framework, Text2Mesh, stylizes a 3D mesh by predicting color and local geometric details which conform to a target text prompt. We consider a disentangled representation of a 3D object using a fixed mesh input (content) coupled with a learned neural network, which we term a neural style field network (NSF). In order to modify style, we obtain a similarity score between a text prompt (describing style) and a stylized mesh by harnessing the representational power of CLIP. Text2Mesh requires neither a pre-trained generative model nor a specialized 3D mesh dataset. It can handle low-quality meshes (non-manifold, boundaries, etc.) with arbitrary genus, and does not require UV parameterization. We demonstrate the ability of our technique to synthesize a myriad of styles over a wide variety of 3D meshes. Our code and results are available in our project webpage: https://threedle.github.io/text2mesh/.
引用
收藏
页码:13482 / 13492
页数:11
相关论文
共 50 条
  • [11] TANGO: Text-driven Photorealistic and Robust 3D Stylization via Lighting Decomposition
    Chen, Yongwei
    Chen, Rui
    Lei, Jiabao
    Zhang, Yabin
    Jia, Kui
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [12] Text2NeRF: Text-Driven 3D Scene Generation With Neural Radiance Fields
    Zhang, Jingbo
    Li, Xiaoyu
    Wan, Ziyu
    Wang, Can
    Liao, Jing
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (12) : 7749 - 7762
  • [13] Text2LIVE: Text-Driven Layered Image and Video Editing
    Bar-Tal, Omer
    Ofri-Amar, Dolev
    Fridman, Rafail
    Kasten, Yoni
    Dekel, Tali
    COMPUTER VISION - ECCV 2022, PT XV, 2022, 13675 : 707 - 723
  • [14] Text2Human: Text-Driven Controllable Human Image Generation
    Jiang, Yuming
    Yang, Shuai
    Qju, Haonan
    Wu, Wayne
    Loy, Chen Change
    Liu, Ziwei
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04):
  • [15] The Framework of Text-driven Business Intelligence
    Zhou, Ning
    Cheng, Hongli
    Chen, Hongqin
    Xiao, Shuang
    2007 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-15, 2007, : 5468 - 5471
  • [16] CLIPTexture: Text-driven Texture Synthesis
    Song, Yiren
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5468 - 5476
  • [17] Text-Driven Separation of Arbitrary Sounds
    Kilgour, Kevin
    Gfeller, Beat
    Huang, Qingqing
    Jansen, Aren
    Wisdom, Scott
    Tagliasacchi, Marco
    INTERSPEECH 2022, 2022, : 5403 - 5407
  • [18] Text2Tex: Text-driven Texture Synthesis via Diffusion Models
    Chen, Dave Zhenyu
    Siddiqui, Yawar
    Lee, Hsin-Ying
    Tulyakov, Sergey
    Niessner, Matthias
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18512 - 18522
  • [19] Text2Video: Text-driven facial animation using MPEG-4
    Rurainsky, J
    Eisert, P
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2005, PTS 1-4, 2005, 5960 : 492 - 500
  • [20] Text2Light. Zero-Shot Text-Driven HDR Panorama Generation
    Chen, Zhaoxi
    Wang, Guangcong
    Liu, Ziwei
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (06):