Text2City: One-Stage Text-Driven Urban Layout Regeneration

被引:0
|
作者
Qin, Yiming [1 ,2 ]
Zhao, Nanxuan [3 ]
Sheng, Bin [1 ]
Lau, Rynson W. H. [2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] City Univ Hong Kong, Hong Kong, Peoples R China
[3] Adobe Res, San Jose, CA USA
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regenerating urban layout is an essential process for urban regeneration. In this paper, we propose a new task called text-driven urban layout regeneration, which provides an intuitive input modal - text - for users to specify the regeneration, instead of designing complex rules. Given the target region to be regenerated, we propose a one-stage text-driven urban layout regeneration model, Text2City, to jointly and progressively regenerate the urban layout (i.e., road and building layouts) based on textual layout descriptions and surrounding context (i.e., urban layouts and functions of the surrounding regions). Text2City first extracts road and building attributes from the textual layout description to guide the regeneration. It includes a novel one-stage joint regenerator network based on the conditioned denoising diffusion probabilistic models (DDPMs) and prior knowledge exchange. To harmonize the regenerated layouts through joint optimization, we propose the interactive & enhanced guidance module for self-enhancement and prior knowledge exchange between road and building layouts during the regeneration. We also design a series of constraints from attribute-, geometry- and pixel-levels to ensure rational urban layout generation. To train our model, we build a large-scale dataset containing urban layouts and layout descriptions, covering 147K regions. Qual-itative and quantitative evaluations show that our proposed method outperforms the baseline methods in regenerating desirable urban layouts that meet the textual descriptions.
引用
收藏
页码:4578 / 4586
页数:9
相关论文
共 26 条
  • [1] Text2Performer: Text-Driven Human Video Generation
    Jiang, Yuming
    Yang, Shuai
    Koh, Tong Liang
    Wu, Wayne
    Loy, Chen Change
    Liu, Ziwei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 22690 - 22700
  • [2] Text2Mesh: Text-Driven Neural Stylization for Meshes
    Michel, Oscar
    Bar-On, Roi
    Liu, Richard
    Benaim, Sagie
    Hanocka, Rana
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 13482 - 13492
  • [3] Text2LIVE: Text-Driven Layered Image and Video Editing
    Bar-Tal, Omer
    Ofri-Amar, Dolev
    Fridman, Rafail
    Kasten, Yoni
    Dekel, Tali
    COMPUTER VISION - ECCV 2022, PT XV, 2022, 13675 : 707 - 723
  • [4] Text2Human: Text-Driven Controllable Human Image Generation
    Jiang, Yuming
    Yang, Shuai
    Qju, Haonan
    Wu, Wayne
    Loy, Chen Change
    Liu, Ziwei
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04):
  • [5] Text2Tex: Text-driven Texture Synthesis via Diffusion Models
    Chen, Dave Zhenyu
    Siddiqui, Yawar
    Lee, Hsin-Ying
    Tulyakov, Sergey
    Niessner, Matthias
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18512 - 18522
  • [6] Text2Video: Text-driven facial animation using MPEG-4
    Rurainsky, J
    Eisert, P
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2005, PTS 1-4, 2005, 5960 : 492 - 500
  • [7] Text2Light. Zero-Shot Text-Driven HDR Panorama Generation
    Chen, Zhaoxi
    Wang, Guangcong
    Liu, Ziwei
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (06):
  • [8] Text2Palette: Text-Driven Color Palette Generation Using Internet Images
    Lei K.
    Liu Z.
    Xu K.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (05): : 694 - 703
  • [9] Text2VRScene: Exploring the Framework of Automated Text-driven Generation System for VR Experience
    Yin, Zhizhuo
    Wang, Yuyang
    Papatheodorou, Theodoros
    Hui, Pan
    2024 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES, VR 2024, 2024, : 701 - 711
  • [10] Text2Scene: Text-driven Indoor Scene Stylization with Part-aware Details
    Hwang, Inwoo
    Kim, Hyeonwoo
    Kim, Young Min
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1890 - 1899