Robust Sparse Principal Component Analysis

被引:75
|
作者
Croux, Christophe [1 ]
Filzmoser, Peter [2 ]
Fritz, Heinrich [2 ]
机构
[1] Katholieke Univ Leuven, Fac Business & Econ, B-3000 Louvain, Belgium
[2] Vienna Univ Technol, Dept Stat & Probabil Theory, A-1040 Vienna, Austria
关键词
Dispersion measure; Outliers; Projection-pursuit; Variable selection; PROJECTION-PURSUIT APPROACH; REGRESSION; COVARIANCE; ESTIMATORS; MATRICES;
D O I
10.1080/00401706.2012.727746
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A method for principal component analysis is proposed that is sparse and robust at the same time. The sparsity delivers principal components that have loadings on a small number of variables, making them easier to interpret. The robustness makes the analysis resistant to outlying observations. The principal components correspond to directions that maximize a robust measure of the variance, with an additional penalty term to take sparseness into account. We propose an algorithm to compute the sparse and robust principal components. The algorithm computes the components sequentially, and thus it can handle datasets with more variables than observations. The method is applied on several real data examples, and diagnostic plots for detecting outliers and for selecting the degree of sparsity are provided. A simulation experiment studies the effect on statistical efficiency by requiring both robustness and sparsity. Supplementary materials are available online on the journal web site.
引用
收藏
页码:202 / 214
页数:13
相关论文
共 50 条
  • [31] Integrative sparse principal component analysis
    Fang, Kuangnan
    Fan, Xinyan
    Zhang, Qingzhao
    Ma, Shuangge
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 1 - 16
  • [32] Automatic sparse principal component analysis
    Park, Heewon
    Yamaguchi, Rui
    Imoto, Seiya
    Miyano, Satoru
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 678 - 697
  • [33] Principal Component Analysis With Sparse Fused Loadings
    Guo, Jian
    James, Gareth
    Levina, Elizaveta
    Michailidis, George
    Zhu, Ji
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 930 - 946
  • [34] Multilevel sparse functional principal component analysis
    Di, Chongzhi
    Crainiceanu, Ciprian M.
    Jank, Wolfgang S.
    [J]. STAT, 2014, 3 (01): : 126 - 143
  • [35] Supervised Sparse and Functional Principal Component Analysis
    Li, Gen
    Shen, Haipeng
    Huang, Jianhua Z.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (03) : 859 - 878
  • [36] On General Adaptive Sparse Principal Component Analysis
    Leng, Chenlei
    Wang, Hansheng
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 201 - 215
  • [37] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [38] Robust Stochastic Principal Component Analysis
    Goes, John
    Zhang, Teng
    Arora, Raman
    Lerman, Gilad
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 266 - 274
  • [39] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    [J]. NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [40] Inductive Robust Principal Component Analysis
    Bao, Bing-Kun
    Liu, Guangcan
    Xu, Changsheng
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3794 - 3800