Robust Sparse Principal Component Analysis

被引:75
|
作者
Croux, Christophe [1 ]
Filzmoser, Peter [2 ]
Fritz, Heinrich [2 ]
机构
[1] Katholieke Univ Leuven, Fac Business & Econ, B-3000 Louvain, Belgium
[2] Vienna Univ Technol, Dept Stat & Probabil Theory, A-1040 Vienna, Austria
关键词
Dispersion measure; Outliers; Projection-pursuit; Variable selection; PROJECTION-PURSUIT APPROACH; REGRESSION; COVARIANCE; ESTIMATORS; MATRICES;
D O I
10.1080/00401706.2012.727746
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A method for principal component analysis is proposed that is sparse and robust at the same time. The sparsity delivers principal components that have loadings on a small number of variables, making them easier to interpret. The robustness makes the analysis resistant to outlying observations. The principal components correspond to directions that maximize a robust measure of the variance, with an additional penalty term to take sparseness into account. We propose an algorithm to compute the sparse and robust principal components. The algorithm computes the components sequentially, and thus it can handle datasets with more variables than observations. The method is applied on several real data examples, and diagnostic plots for detecting outliers and for selecting the degree of sparsity are provided. A simulation experiment studies the effect on statistical efficiency by requiring both robustness and sparsity. Supplementary materials are available online on the journal web site.
引用
下载
收藏
页码:202 / 214
页数:13
相关论文
共 50 条
  • [11] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [12] Sparse Robust Principal Component Analysis with Applications to Fault Detection and Diagnosis
    Luo, Lijia
    Bao, Shiyi
    Tong, Chudong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (03) : 1300 - 1309
  • [13] Joint sparse principal component regression with robust property
    Qi, Kai
    Tu, Jingwen
    Yang, Hu
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [14] Robust Sparse 2D Principal Component Analysis for Object Recognition
    Meng, Jicheng
    Zheng, Xiaolong
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (06): : 2509 - 2514
  • [15] Robust Object Tracking Based on Principal Component Analysis and Local Sparse Representation
    Liu, Haicang
    Li, Shutao
    Fang, Leyuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (11) : 2863 - 2875
  • [16] Adaptive Weighted Sparse Principal Component Analysis for Robust Unsupervised Feature Selection
    Yi, Shuangyan
    He, Zhenyu
    Jing, Xiao-Yuan
    Li, Yi
    Cheung, Yiu-Ming
    Nie, Feiping
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (06) : 2153 - 2163
  • [17] Robust and Sparse Principal Component Analysis With Adaptive Loss Minimization for Feature Selection
    Bian, Jintang
    Zhao, Dandan
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3601 - 3614
  • [18] Improved Sparse Representation based on Robust Principal Component Analysis for Face Recognition
    Hou, Yi-Fu
    Pei, Wen-Juan
    Zhang, Yan
    Zheng, Chun-Hou
    FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2014, : 211 - 215
  • [19] A ROBUST PRINCIPAL COMPONENT ANALYSIS
    RUYMGAART, FH
    JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) : 485 - 497
  • [20] Robust principal component analysis
    Partridge, Matthew
    Jabri, Marwan
    Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 289 - 298