Finite-size scaling and deconfinement transition in gauge theories

被引:4
|
作者
Fiore, R [1 ]
Papa, A
Provero, P
机构
[1] Univ Calabria, Dipartimento Fis, I-87030 Commenda Di Rende, Italy
[2] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Cosenza, Italy
[3] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, Alessandria, Italy
[4] Univ Turin, Dipartimento Fis Teor, Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
关键词
D O I
10.1016/S0920-5632(01)01755-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A new method is proposed for determining the critical indices of the deconfinement transition in gauge theories, based on the finite-size scaling analysis of simple lattice operators, such as the plaquette. A precise determination of the critical index v, in agreement with the prediction of the Svetitsky-Yaffe conjecture, is obtained for SU(3) gauge theory in (2+1)-dimension. Preliminary results for SU(2) in (3+1)-dimension are also given.
引用
收藏
页码:486 / 488
页数:3
相关论文
共 50 条
  • [21] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264
  • [22] Towards the deconfinement phase transition in hot gauge theories
    Borisenko, O
    Faber, M
    Zinovjev, G
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 409 - 411
  • [23] FINITE SIZE EFFECTS IN THE DECONFINEMENT TRANSITION
    DAVIDSON, NJ
    QUICK, RM
    MILLER, HG
    PLASTINO, A
    [J]. PHYSICS LETTERS B, 1991, 264 (3-4) : 243 - 247
  • [24] Scaling and the continuum limit of the finite temperature deconfinement transition in SU(Nc) pure gauge theory
    Datta, Saumen
    Gupta, Sourendu
    [J]. PHYSICAL REVIEW D, 2009, 80 (11):
  • [25] Confinement/deconfinement transition of large N gauge theories with Nf fundamentals:: nf/n finite
    Schnitzer, HJ
    [J]. NUCLEAR PHYSICS B, 2004, 695 (03) : 267 - 282
  • [26] Finite-size scaling for the glass transition: The role of a static length scale
    Karmakar, Smarajit
    Procaccia, Itamar
    [J]. PHYSICAL REVIEW E, 2012, 86 (06):
  • [27] Multifractal finite-size scaling at the Anderson transition in the unitary symmetry class
    Lindinger, Jakob
    Rodriguez, Alberto
    [J]. PHYSICAL REVIEW B, 2017, 96 (13)
  • [28] Finite-size scaling method for the Berezinskii-Kosterlitz-Thouless transition
    Hsieh, Yun-Da
    Kao, Ying-Jer
    Sandvik, Anders W.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [29] Phase transition and finite-size scaling in the vertex-cover problem
    Hartmann, AK
    Barthel, W
    Weigt, M
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2005, 169 (1-3) : 234 - 237
  • [30] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (21)