Reliable comparison for power amplifiers nonlinear behavioral modeling based on regression trees and random forest

被引:2
|
作者
Aguila-Torres, Daniel Santiago [1 ]
Alejandro Galaviz-Aguilar, Jose [2 ]
Ricardo Cardenas-Valdez, Jose [1 ]
机构
[1] IT Tijuana, Tecnol Nacl Mexico, Tijuana, Mexico
[2] Tecnol Monterrey, Sch Sci & Engn, Monterrey, Mexico
关键词
regression tree; random forest; digital predistortion; power amplifier; linearization;
D O I
10.1109/ISCAS48785.2022.9937863
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work evaluates the construction of feature extraction nonlinear behavioral models based on Regression Trees and Random Forest techniques. A framework to evaluate the effectiveness with enough-accuracy regressor models are evaluated to aid in the design of a digital predistorter (DPD) for the power amplifier (PA) linearization. The comparison with a conventional memory polynomial model (MPM) and two ensemble learning models is performed to reveal the ability in decision and region identification without overfitting for the Regression Tree and a Random Forest algorithms.
引用
收藏
页码:1527 / 1530
页数:4
相关论文
共 50 条
  • [1] Behavioral Modeling and Predistortion of nonlinear Power Amplifiers Based on Adaptive Filtering Techniques
    Zerguine, Azzedine
    Hammi, Oualid
    Abdelhafiz, Abubakr H.
    Helaoui, Mohammed
    Ghannouchi, Fadhel
    2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,
  • [2] Behavioral modeling of nonlinear radio-frequency power amplifiers
    Vryssas, Konstantinos S.
    Samelis, Apostolos
    2005 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS, VOLS 1-5, 2005, : 53 - 56
  • [3] Augmented behavioral characterization for modeling the nonlinear response of power amplifiers
    Asbeck, PM
    Kobayashi, H
    Iwamoto, M
    Hanington, G
    Nam, S
    Larson, LE
    2002 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2002, : 135 - 138
  • [4] NONLINEAR BEHAVIORAL OF GaN DOHERTY POWER AMPLIFIERS USING NEURAL MODELING
    Liu, Haiwen
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2010, 52 (02) : 307 - 309
  • [5] Behavioral modeling of nonlinear RF power amplifiers considering memory effects
    Ku, HC
    Kenney, JS
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (12) : 2495 - 2504
  • [6] Behavioral Modeling of Nonlinear Power Amplifiers Using Spiking Neural Networks
    Wang, Siqi
    Ferreira, Pietro Maris
    Benlarbi-Delai, Aziz
    2022 20TH IEEE INTERREGIONAL NEWCAS CONFERENCE (NEWCAS), 2022, : 495 - 499
  • [7] Predictive Modeling Performance Comparison of Port-Based Hydrocarbon Emissions Using Multiple Linear Regression, Decision Trees and Random Forest
    Basangoudar, Mythili
    Paternina-Arboleda, Carlos D.
    Agudelo-Castaneda, Dayana
    COMPUTATIONAL LOGISTICS, ICCL 2024, 2024, 15168 : 299 - 314
  • [8] Multislice behavioral modeling based on envelope domain for power amplifiers
    Wang Huadong
    Bao Jingfu
    Wu Zhengde
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2009, 20 (02) : 274 - 277
  • [10] Behavioral modeling of nonlinear RF power amplifiers using ensemble SDBCC network
    Xie, Liping
    Wei, Haikun
    Zhang, Kanjian
    NEUROCOMPUTING, 2015, 154 : 24 - 32