Extended F-expansion method and periodic wave solutions for Klein-Gordon-Schrodinger equations

被引:0
|
作者
Li, XY [1 ]
Li, XZ
Wang, ML
机构
[1] Henan Univ Sci & Technol, Coll Sci, Luoyang 471003, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
关键词
Klein-Gordon-Schrodinger equations; F-expansion method; periodic wave solutions; Jacobi elliptic functions; solitary wave solutions;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. By using extended F-expansion method, many periodic wave solutions expressed,by various Jacobi elliptic functions for the Klein-Gordon-Schrodinger equations are obtained. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained.
引用
收藏
页码:9 / 14
页数:6
相关论文
共 50 条
  • [41] Maximum norm error estimates of a linear CADI method for the Klein-Gordon-Schrodinger equations
    Chen, Juan
    Chen, Fangqi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1327 - 1342
  • [42] A Fourier spectral method for the nonlinear coupled space fractional Klein-Gordon-Schrodinger equations
    Jia, Junqing
    Jiang, Xiaoyun
    Yang, Xiu
    Zhang, Hui
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (02):
  • [43] THE FINITE DIFFERENCE METHOD FOR DISSIPATIVE KLEIN-GORDON-SCHRODINGER EQUATIONS IN THREE SPACE DIMENSIONS
    Zhang, Fayong
    Han, Bo
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2010, 28 (06) : 879 - 900
  • [44] STABILITY PROPERTIES OF PERIODIC STANDING WAVES FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM
    Natali, Fabio
    Pastor, Ademir
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (02) : 413 - 430
  • [45] Global existence and uniform decay for the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, MM
    Cavalcanti, VND
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (03): : 285 - 307
  • [46] Fractional Klein-Gordon-Schrodinger equations with Mittag-Leffler memory
    Veeresha, P.
    Prakasha, D. G.
    Singh, Jagdev
    Kumar, Devendra
    Baleanu, Dumitru
    [J]. CHINESE JOURNAL OF PHYSICS, 2020, 68 : 65 - 78
  • [47] PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR DISCRETE KLEIN-GORDON-SCHRODINGER EQUATIONS
    Zhao, Caidi
    Xue, Gang
    Lukaszewicz, Grzegorz
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 4021 - 4044
  • [48] Attractor for dissipative Klein-Gordon-Schrodinger equations in R-3
    Guo, BL
    Li, YS
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (02) : 356 - 377
  • [49] Statistical solution and Liouville type theorem for the Klein-Gordon-Schrodinger equations
    Zhao, Caidi
    Caraballo, Tomas
    Lukaszewicz, Grzegorz
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 281 : 1 - 32
  • [50] A linearized conservative nonconforming FEM for nonlinear Klein-Gordon-Schrodinger equations
    Shi, Dongyang
    Zhang, Houchao
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 106 : 57 - 73