On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics

被引:17
|
作者
Díaz, JI [1 ]
Lerena, MB
机构
[1] Univ Complutense Madrid, Fac CC Matemat, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Autonoma Madrid, Fac CC Econ & Empresariales, Fac Anal Econ, E-28049 Madrid, Spain
来源
关键词
incompressible viscous and ideal magnetohydrodynamics; non-resistive limit; Braginski viscosity operator;
D O I
10.1142/S0218202502002173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the convergence of the solutions for the incompressible homogeneous magnetohydrodynamics (MHD) system to the solutions to ideal MHD one in the inviscid and non-resistive limit, detailing the explicit convergence rates. For this study we consider a fluid occupying the whole space R-3 and we assume that the, viscosity effects in this fluid can be described by two different operators: the usual Laplacian operator affected by the inverse of the Reynolds number or by a viscosity operator introduced by S. I. Braginskii in 1965.
引用
收藏
页码:1401 / 1419
页数:19
相关论文
共 50 条
  • [41] SUPERCONVERGENCE OF THE STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS
    Wang, Pengfei
    Huang, Pengzhan
    Wu, Jilian
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (01): : 281 - 292
  • [42] On approximate solutions of the equations of incompressible magnetohydrodynamics
    Pizzocchero, Livio
    Tassi, Emanuele
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195 (195)
  • [43] Local existence and uniqueness for the non-resistive MHD equations in homogeneous Besov spaces
    Li, Jinlu
    Tan, Wenke
    Yin, Zhaoyang
    ADVANCES IN MATHEMATICS, 2017, 317 : 786 - 798
  • [44] Sharp ill-posedness for the non-resistive MHD equations in Sobolev spaces
    Chen, Qionglei
    Nie, Yao
    Ye, Weikui
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (06)
  • [45] A MONOLITHIC APPROACH FOR THE INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS
    Ata, Kayhan
    Sahin, Mehmet
    COUPLED PROBLEMS IN SCIENCE AND ENGINEERING VII (COUPLED PROBLEMS 2017), 2017, : 491 - 501
  • [46] On the Inviscid Limit Problem of the Vorticity Equations for Viscous Incompressible Flows in the Half-Plane
    Maekawa, Yasunori
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (07) : 1045 - 1128
  • [47] On the Singular Incompressible Limit of Inviscid Compressible Fluids
    P. Secchi
    Journal of Mathematical Fluid Mechanics, 2000, 2 : 107 - 125
  • [48] On the Singular Incompressible Limit of Inviscid Compressible Fluids
    Secchi, Paolo
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2000, 2 (02) : 107 - 125
  • [49] Incompressible Limit of Ideal Magnetohydrodynamics in a Domain with Boundaries
    Ju, Qiangchang
    Wang, Jiawei
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (4) : 1441 - 1465
  • [50] On the incompressible limit of inviscid compressible fluids.
    Secchi, P
    ANNALES OF THE UNIVERSITY OF FERRA, SECTION VII, MATHEMATICAL SCIENCES, 2000, 46 : 21 - 33