On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics

被引:17
|
作者
Díaz, JI [1 ]
Lerena, MB
机构
[1] Univ Complutense Madrid, Fac CC Matemat, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Autonoma Madrid, Fac CC Econ & Empresariales, Fac Anal Econ, E-28049 Madrid, Spain
来源
关键词
incompressible viscous and ideal magnetohydrodynamics; non-resistive limit; Braginski viscosity operator;
D O I
10.1142/S0218202502002173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the convergence of the solutions for the incompressible homogeneous magnetohydrodynamics (MHD) system to the solutions to ideal MHD one in the inviscid and non-resistive limit, detailing the explicit convergence rates. For this study we consider a fluid occupying the whole space R-3 and we assume that the, viscosity effects in this fluid can be described by two different operators: the usual Laplacian operator affected by the inverse of the Reynolds number or by a viscosity operator introduced by S. I. Braginskii in 1965.
引用
收藏
页码:1401 / 1419
页数:19
相关论文
共 50 条
  • [31] On the incompressible limit of inviscid compressible fluids
    Secchi P.
    Annali dell’Università di Ferrara, 2000, 46 (1): : 21 - 33
  • [32] The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension
    Yan, Yan
    Yan, Weiping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (02) : 209 - 234
  • [33] The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension
    Yan YAN
    Weiping YAN
    ChineseAnnalsofMathematics,SeriesB, 2023, (02) : 209 - 234
  • [34] The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension
    Yan Yan
    Weiping Yan
    Chinese Annals of Mathematics, Series B, 2023, 44 : 209 - 234
  • [35] On the inviscid limit of the three dimensional incompressible chemotaxis-Navier-Stokes equations
    Zhang, Qian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 : 70 - 79
  • [36] The inviscid limit in the Cauchy problem of the inhomogeneous incompressible Navier-Stokes equations
    Zhai, Xiaoping
    Guo, Boling
    Chen, Fei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (01) : 253 - 269
  • [37] Local Existence for the Non-Resistive MHD Equations in Nearly Optimal Sobolev Spaces
    Charles L. Fefferman
    David S. McCormick
    James C. Robinson
    Jose L. Rodrigo
    Archive for Rational Mechanics and Analysis, 2017, 223 : 677 - 691
  • [38] Local Existence for the Non-Resistive MHD Equations in Nearly Optimal Sobolev Spaces
    Fefferman, Charles L.
    McCormick, David S.
    Robinson, James C.
    Rodrigo, Jose L.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (02) : 677 - 691
  • [39] Non-uniform continuous dependence and continuous dependence for the non-resistive MHD equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhu, Weipeng
    ADVANCES IN MATHEMATICS, 2023, 426
  • [40] Regularity criteria for the three-dimensional axially symmetric non-resistive incompressible magnetohydrodynamic system
    Han, Bin
    Yang, Chibin
    Zhao, Na
    APPLICABLE ANALYSIS, 2025, 104 (04) : 719 - 732