On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics

被引:17
|
作者
Díaz, JI [1 ]
Lerena, MB
机构
[1] Univ Complutense Madrid, Fac CC Matemat, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Autonoma Madrid, Fac CC Econ & Empresariales, Fac Anal Econ, E-28049 Madrid, Spain
来源
关键词
incompressible viscous and ideal magnetohydrodynamics; non-resistive limit; Braginski viscosity operator;
D O I
10.1142/S0218202502002173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the convergence of the solutions for the incompressible homogeneous magnetohydrodynamics (MHD) system to the solutions to ideal MHD one in the inviscid and non-resistive limit, detailing the explicit convergence rates. For this study we consider a fluid occupying the whole space R-3 and we assume that the, viscosity effects in this fluid can be described by two different operators: the usual Laplacian operator affected by the inverse of the Reynolds number or by a viscosity operator introduced by S. I. Braginskii in 1965.
引用
收藏
页码:1401 / 1419
页数:19
相关论文
共 50 条
  • [21] Relativistic non-resistive viscous magnetohydrodynamics from the kinetic theory: a relaxation time approach
    Panda, Ankit Kumar
    Dash, Ashutosh
    Biswas, Rajesh
    Roy, Victor
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
  • [22] A regularity result for the incompressible inviscid magnetohydrodynamics equations in the Arbitrary Lagrangian-Eulerian coordinates
    Xie, Binqiang
    Luo, Ting
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
  • [23] Relativistic non-resistive viscous magnetohydrodynamics from the kinetic theory: a relaxation time approach
    Ankit Kumar Panda
    Ashutosh Dash
    Rajesh Biswas
    Victor Roy
    Journal of High Energy Physics, 2021
  • [24] Local existence for the non-resistive MHD equations in Besov spaces
    Chemin, Jean-Yves
    McCormick, David S.
    Robinson, James C.
    Rodrigo, Jose L.
    ADVANCES IN MATHEMATICS, 2016, 286 : 1 - 31
  • [25] On the splash singularity for the free-boundary problem of the viscous and non-resistive incompressible magnetohydrodynamic equations in 3D
    Hong, Guangyi
    Luo, Tao
    Zhao, Zhonghao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 419 : 40 - 80
  • [26] The inviscid limit of the incompressible anisotropic Navier-Stokes equations with the non-slip boundary condition
    Liu, Cheng-Jie
    Wang, Ya-Guang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04): : 1187 - 1225
  • [27] On the global solvability and the non-resistive limit of the one-dimensional compressible heat-conductive MHD equations
    Zhang, Jianwen
    Zhao, Xiaokui
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (03)
  • [28] LOCAL-IN-TIME EXISTENCE FOR THE NON-RESISTIVE INCOMPRESSIBLE MAGNETO-MICROPOLAR FLUIDS
    Zhang, Peixin
    Zhu, Mingxuan
    APPLICATIONS OF MATHEMATICS, 2022, 67 (02) : 199 - 208
  • [29] Local-in-time existence for the non-resistive incompressible magneto-micropolar fluids
    Peixin Zhang
    Mingxuan Zhu
    Applications of Mathematics, 2022, 67 : 199 - 208
  • [30] UNIQUE WEAK SOLUTIONS OF THE NON-RESISTIVE MAGNETOHYDRODYNAMIC EQUATIONS WITH FRACTIONAL DISSIPATION
    Jiu, Quansen
    Suo, Xiaoxiao
    Wu, Jiahong
    Yu, Huan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (04) : 987 - 1022