Missing value imputation for microarray data: a comprehensive comparison study and a web tool

被引:26
|
作者
Chiu, Chia-Chun [1 ]
Chan, Shih-Yao [1 ]
Wang, Chung-Ching [1 ]
Wu, Wei-Sheng [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 701, Taiwan
来源
BMC SYSTEMS BIOLOGY | 2013年 / 7卷
关键词
CELL-CYCLE TRANSCRIPTION; GENE-EXPRESSION DATA; SACCHAROMYCES-CEREVISIAE; REGULATORY MODULES; IDENTIFICATION; PROFILES; LYMPHOMA; IMPACT;
D O I
10.1186/1752-0509-7-S6-S12
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Microarray data are usually peppered with missing values due to various reasons. However, most of the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing value estimation are needed for improving the performance of microarray data analyses. Although many algorithms have been developed, there are many debates on the selection of the optimal algorithm. The studies about the performance comparison of different algorithms are still incomprehensive, especially in the number of benchmark datasets used, the number of algorithms compared, the rounds of simulation conducted, and the performance measures used. Results: In this paper, we performed a comprehensive comparison by using (I) thirteen datasets, (II) nine algorithms, (III) 110 independent runs of simulation, and (IV) three types of measures to evaluate the performance of each imputation algorithm fairly. First, the effects of different types of microarray datasets on the performance of each imputation algorithm were evaluated. Second, we discussed whether the datasets from different species have different impact on the performance of different algorithms. To assess the performance of each algorithm fairly, all evaluations were performed using three types of measures. Our results indicate that the performance of an imputation algorithm mainly depends on the type of a dataset but not on the species where the samples come from. In addition to the statistical measure, two other measures with biological meanings are useful to reflect the impact of missing value imputation on the downstream data analyses. Our study suggests that local-least-squares-based methods are good choices to handle missing values for most of the microarray datasets. Conclusions: In this work, we carried out a comprehensive comparison of the algorithms for microarray missing value imputation. Based on such a comprehensive comparison, researchers could choose the optimal algorithm for their datasets easily. Moreover, new imputation algorithms could be compared with the existing algorithms using this comparison strategy as a standard protocol. In addition, to assist researchers in dealing with missing values easily, we built a web-based and easy-to-use imputation tool, MissVIA (http://cosbi.ee.ncku.edu.tw/MissVIA), which supports many imputation algorithms. Once users upload a real microarray dataset and choose the imputation algorithms, MissVIA will determine the optimal algorithm for the users' data through a series of simulations, and then the imputed results can be downloaded for the downstream data analyses.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] An ensemble approach to microarray data-based gene prioritization after missing value imputation
    Hua, Dong
    Lai, Yinglei
    BIOINFORMATICS, 2007, 23 (06) : 747 - 754
  • [42] Missing value estimation for DNA microarray gene expression data: local least squares imputation
    Kim, H
    Golub, GH
    Park, H
    BIOINFORMATICS, 2005, 21 (02) : 187 - 198
  • [43] MIDA: a Web Tool for MIssing DAta Imputation based on a Boosted and Incremental Learning Algorithm
    Acampora, Giovanni
    Vitiello, Autilia
    Siciliano, Roberta
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [44] Impact of Missing Value Imputation on Classification for DNA Microarray Gene Expression Data-A Model-Based Study
    Sun, Youting
    Braga-Neto, Ulisses
    Dougherty, Edward R.
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2009, (01):
  • [45] Missing value imputation strategies for metabolomics data
    Grace Armitage, Emily
    Godzien, Joanna
    Alonso-Herranz, Vanesa
    Lopez-Gonzalvez, Angeles
    Barbas, Coral
    ELECTROPHORESIS, 2015, 36 (24) : 3050 - 3060
  • [46] Missing Value Imputation: With Application to Handwriting Data
    Xu, Zhen
    Srihari, Sargur N.
    DOCUMENT RECOGNITION AND RETRIEVAL XXII, 2015, 9402
  • [47] Imputation of missing values in DNA microarray gene expression data
    Kim, H
    Golub, GH
    Park, H
    2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 572 - 573
  • [48] Comparison of Imputation Methods Based on Missing Value Detection for Multidimensional Feature Data
    Qiao F.
    Zhai X.
    Wang Q.
    Tongji Daxue Xuebao/Journal of Tongji University, 2023, 51 (12): : 1972 - 1982
  • [49] Shrinkage regression-based methods for microarray missing value imputation
    Wang, Hsiuying
    Chiu, Chia-Chun
    Wu, Yi-Ching
    Wu, Wei-Sheng
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [50] An Optimization Algorithm for Missing Value Imputation in Microarray Based on Integrated Information
    Liu, Feng
    Zhang, Yiding
    Liu, Zeming
    Gao, Meng
    FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 55 - 64