Missing Value Imputation: With Application to Handwriting Data

被引:0
|
作者
Xu, Zhen [1 ]
Srihari, Sargur N. [1 ]
机构
[1] SUNY Buffalo, Buffalo, NY 14260 USA
来源
关键词
Missing Value Imputation; Bayesian Network; Parameter EM; Structural EM; NETWORKS;
D O I
10.1117/12.2075842
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Missing values make pattern analysis difficult, particularly with limited available data. In longitudinal research, missing values accumulate, thereby aggravating the problem. Here we consider how to deal with temporal data with missing values in handwriting analysis. In the task of studying development of individuality of handwriting, we encountered the fact that feature values are missing for several individuals at several time instances. Six algorithms, i.e., random imputation, mean imputation, most likely independent value imputation, and three methods based on Bayesian network (static Bayesian network, parameter EM, and structural EM), are compared with children's handwriting data. We evaluate the accuracy and robustness of the algorithms under different ratios of missing data and missing values, and useful conclusions are given. Specifically, static Bayesian network is used for our data which contain around 5% missing data to provide adequate accuracy and low computational cost.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Missing value imputation strategies for metabolomics data
    Grace Armitage, Emily
    Godzien, Joanna
    Alonso-Herranz, Vanesa
    Lopez-Gonzalvez, Angeles
    Barbas, Coral
    [J]. ELECTROPHORESIS, 2015, 36 (24) : 3050 - 3060
  • [2] Missing value imputation and outlier detection for functional data: an application for PM10 data
    Melendez, Rafael
    Bolivar, Stevenson
    Rojano, Roberto
    [J]. UIS INGENIERIAS, 2020, 19 (02): : 1 - 10
  • [3] A New Method to Missing Value Imputation for Immunosignature Data
    Koshechkin, A. A.
    Andryushchenko, V. S.
    Zamyatin, A., V
    [J]. SOVREMENNYE TEHNOLOGII V MEDICINE, 2019, 11 (02) : 19 - 23
  • [4] A robust missing value imputation method for noisy data
    Zhu, Bing
    He, Changzheng
    Liatsis, Panos
    [J]. APPLIED INTELLIGENCE, 2012, 36 (01) : 61 - 74
  • [5] A robust missing value imputation method for noisy data
    Bing Zhu
    Changzheng He
    Panos Liatsis
    [J]. Applied Intelligence, 2012, 36 : 61 - 74
  • [6] Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data
    Sehgal, MSB
    Gondal, I
    Dooley, LS
    [J]. BIOINFORMATICS, 2005, 21 (10) : 2417 - 2423
  • [7] Missing value imputation on missing completely at random data using multilayer perceptrons
    Silva-Ramirez, Esther-Lydia
    Pino-Mejias, Rafael
    Lopez-Coello, Manuel
    Cubiles-de-la-Vega, Maria-Dolores
    [J]. NEURAL NETWORKS, 2011, 24 (01) : 121 - 129
  • [8] Application of Multiple Imputation Method for Missing Data Estimation
    Ser, Gazel
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2012, 25 (04): : 869 - 873
  • [9] Application and Comparison of Imputation Methods for Missing Degradation Data
    Fan, Ye
    Sun, Fuqiang
    Jiang, Tongmin
    [J]. ENGINEERING ASSET MANAGEMENT - SYSTEMS, PROFESSIONAL PRACTICES AND CERTIFICATION, 2015, : 1607 - 1614
  • [10] IMPUTATION OF MISSING DATA
    Lunt, M.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 : 49 - 49