A robust missing value imputation method for noisy data

被引:0
|
作者
Bing Zhu
Changzheng He
Panos Liatsis
机构
[1] Sichuan University,Business School
[2] City University,School of Engineering and Mathematical Sciences
来源
Applied Intelligence | 2012年 / 36卷
关键词
Missing data imputation; Noise; Group method of data handling (GMDH);
D O I
暂无
中图分类号
学科分类号
摘要
Missing data imputation is an important research topic in data mining. The impact of noise is seldom considered in previous works while real-world data often contain much noise. In this paper, we systematically investigate the impact of noise on imputation methods and propose a new imputation approach by introducing the mechanism of Group Method of Data Handling (GMDH) to deal with incomplete data with noise. The performance of four commonly used imputation methods is compared with ours, called RIBG (robust imputation based on GMDH), on nine benchmark datasets. The experimental result demonstrates that noise has a great impact on the effectiveness of imputation techniques and our method RIBG is more robust to noise than the other four imputation methods used as benchmark.
引用
收藏
页码:61 / 74
页数:13
相关论文
共 50 条
  • [1] A robust missing value imputation method for noisy data
    Zhu, Bing
    He, Changzheng
    Liatsis, Panos
    [J]. APPLIED INTELLIGENCE, 2012, 36 (01) : 61 - 74
  • [2] Robust Recognition of Noisy Speech Through Partial Imputation of Missing Data
    Kian Ebrahim Kafoori
    Seyed Mohammad Ahadi
    [J]. Circuits, Systems, and Signal Processing, 2018, 37 : 1625 - 1648
  • [3] Robust Recognition of Noisy Speech Through Partial Imputation of Missing Data
    Kafoori, Kian Ebrahim
    Ahadi, Seyed Mohammad
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (04) : 1625 - 1648
  • [4] Robust imputation method for missing values in microarray data
    Yoon, Dankyu
    Lee, Eun-Kyung
    Park, Taesung
    [J]. BMC BIOINFORMATICS, 2007, 8 (Suppl 2)
  • [5] Robust imputation method for missing values in microarray data
    Dankyu Yoon
    Eun-Kyung Lee
    Taesung Park
    [J]. BMC Bioinformatics, 8
  • [6] Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data
    Sehgal, MSB
    Gondal, I
    Dooley, LS
    [J]. BIOINFORMATICS, 2005, 21 (10) : 2417 - 2423
  • [7] A comprehensive empirical evaluation of missing value imputation in noisy software measurement data
    Van Hulse, Jason
    Khoshgoftaar, Taghi M.
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2008, 81 (05) : 691 - 708
  • [8] A New Method to Missing Value Imputation for Immunosignature Data
    Koshechkin, A. A.
    Andryushchenko, V. S.
    Zamyatin, A., V
    [J]. SOVREMENNYE TEHNOLOGII V MEDICINE, 2019, 11 (02) : 19 - 23
  • [9] Flexible and Robust Method for Missing Loop Detector Data Imputation
    Henrickson, Kristian
    Zou, Yajie
    Wang, Yinhai
    [J]. TRANSPORTATION RESEARCH RECORD, 2015, (2527) : 29 - 36
  • [10] rMisbeta: A robust missing value imputation approach in transcriptomics and metabolomics data
    Shahjaman, Md
    Rahman, Md Rezanur
    Islam, Tania
    Auwul, Md Rabiul
    Moni, Mohammad Ali
    Mollah, Md Nurul Haque
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 138 (138)