An 8.2 Gb/s-to-10.3 Gb/s Full-Rate Linear Referenceless CDR Without Frequency Detector in 0.18 μm CMOS

被引:30
|
作者
Huang, Sui [1 ]
Cao, Jun [2 ]
Green, Michael M. [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
[2] Broadcom Corp, Irvine, CA 92617 USA
关键词
Analog; clock-and-data recovery (CDR); CMOS; jitter tolerance; linear phase detector; receiver; referenceless; wide-band data communication; DATA RECOVERY CIRCUIT; CONTINUOUS-RATE CLOCK; PHASE; TRANSCEIVER;
D O I
10.1109/JSSC.2015.2427332
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An 8.2 Gb/s-to-10.3 Gb/s full-rate referenceless CDR in 0.18 mu m CMOS is presented. By realizing an asymmetric phase detector transfer curve, the linear CDR's "single-sided" capture range increases, which allows the Hogge phase detector itself to function as a frequency detector, thus eliminating the need for the reference clock and the separate frequency detector in conventional dual-loop CDRs. Robust frequency and phase acquisition is demonstrated. Furthermore, a new phase adjustment mode is added to further improve the jitter tolerance performance. The measurement results show that with a 10.3 Gb/s 2(31)-1 PRBS input, the random jitter at the output data is 0.336 Ps(rms), and the out-of-band jitter tolerance is 0.34 UIp-p.
引用
收藏
页码:2048 / 2060
页数:13
相关论文
共 50 条
  • [31] A 12.5-Gb/s Self-Calibrating Linear Phase Detector-based CDR using 0.18μm SiGe BiCMOS
    Walker, Jeremy
    Kenney, John G.
    Bankman, Jesse
    Chen, Terry
    Harston, Steve
    Lawas, Kenneth
    Lewine, Andrew
    Soenneker, Richard
    St Germain, Michael
    Titus, Ward
    Wang, Andrew Y.
    Tam, Kimo
    2014 IEEE PROCEEDINGS OF THE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2014,
  • [32] A 0.13-μm CMOS resonator-based frequency-doubling mechanism for clock recovery in a full-rate 40 Gb/s optical receiver
    Chong, Joseph
    Pour, Fariborz Lohrabi
    Ha, Dong Sam
    MICROELECTRONICS JOURNAL, 2021, 114
  • [33] 10 Gb/s 0.18 μm CMOS laser diode driver IC
    Lei, Kai
    Feng, Jun
    Wang, Zhi-Gong
    Dianzi Qijian/Journal of Electron Devices, 2004, 27 (03):
  • [34] A 0.75-3.0-Gb/s Dual-Mode Temperature-Tolerant Referenceless CDR With a Deadzone-Compensated Frequency Detector
    Jin, Jahoon
    Jin, Xuefan
    Jung, Jaehong
    Kwon, Kiwon
    Kim, Jintae
    Chun, Jung-Hoon
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (10) : 2994 - 3003
  • [35] A 1.4-psec jitter 2.5-Gb/s CDR with wide acquisition range in 0.18-μm CMOS
    Raja, M. Kumarasamy
    Yan, Dan Lei
    Ajjikuttira, Aruna B.
    ESSCIRC 2007: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, 2007, : 524 - 527
  • [36] 250Mb/s to 3Gb/s Unilateral Continuous Rate CDR Using Precise Frequency Detector and 1/5-Rate Linear Phase Detector
    Nguyen Thanh Trung
    Hafliger, Philipp
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 181 - 184
  • [37] A 200 Mb/s∼3.2 Gb/s referenceless clock and data recovery circuit with bidirectional frequency detector
    Nguyen Huu Tho
    Son, Kyung-Sub
    Kang, Jin-Ku
    IEICE ELECTRONICS EXPRESS, 2017, 14 (08):
  • [38] A 5-Gb/s CDR circuit with automatically calibrated linear phase detector
    Rennie, David
    Sachdev, Manoj
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (03) : 796 - 803
  • [39] A Referenceless All-Digital Fast Frequency Acquisition Full-Rate CDR Circuit for USB 2.0 in 65nm CMOS Technology
    Chung, Ching-Che
    Dai, Wei-Cheng
    2011 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2011, : 217 - 220
  • [40] A 0.2-7.1-Gb/s Low-Jitter Full-Rate Reference-Less CDR for Communication Signal Analyzers
    Meng, Xiangyu
    Xie, Wang
    Zhang, Jiaqi
    Zhang, Zhao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72