Semiparametric Fractional Imputation Using Gaussian Mixture Models for Handling Multivariate Missing Data

被引:7
|
作者
Sang, Hejian [1 ]
Kim, Jae Kwang [2 ]
Lee, Danhyang [3 ]
机构
[1] Google Inc, Mountain View, CA USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[3] Univ Alabama, Dept Informat Syst Stat & Management Sci, Tuscaloosa, AL USA
基金
美国国家科学基金会;
关键词
Item nonresponse; Robust estimation; Variance estimation; MULTIPLE-IMPUTATION; LIKELIHOOD; DISTRIBUTIONS; SELECTION; VALUES;
D O I
10.1080/01621459.2020.1796358
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Item nonresponse is frequently encountered in practice. Ignoring missing data can lose efficiency and lead to misleading inference. Fractional imputation is a frequentist approach of imputation for handling missing data. However, the parametric fractional imputation may be subject to bias under model misspecification. In this article, we propose a novel semiparametric fractional imputation (SFI) method using Gaussian mixture models. The proposed method is computationally efficient and leads to robust estimation. The proposed method is further extended to incorporate the categorical auxiliary information. The asymptotic model consistency and root n-consistency of the SFI estimator are also established. Some simulation studies are presented to check the finite sample performance of the proposed method.
引用
下载
收藏
页码:654 / 663
页数:10
相关论文
共 50 条
  • [1] Multivariate data imputation using Gaussian mixture models
    Silva, Diogo S. F.
    Deutsch, Clayton, V
    SPATIAL STATISTICS, 2018, 27 : 74 - 90
  • [2] Semiparametric imputation using conditional Gaussian mixture models under item nonresponse
    Lee, Danhyang
    Kim, Jae Kwang
    BIOMETRICS, 2022, 78 (01) : 227 - 237
  • [3] MI2AMI: Missing Data Imputation Using Mixed Deep Gaussian Mixture Models
    Fuchs, Robin
    Pommeret, Denys
    Stocksieker, Samuel
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2022, PT I, 2023, 13810 : 211 - 222
  • [4] Imputation is beneficial for handling missing data in predictive models
    Steyerberg, Ewout W.
    van Veen, Mirjam
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2007, 60 (09) : 979 - 979
  • [5] Gaussian Scale Mixture Models for Robust Linear Multivariate Regression with Missing Data
    Ala-Luhtala, Juha
    Piche, Robert
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 791 - 813
  • [6] Handling Missing Data in Growth Mixture Models
    Lee, Daniel Y. Y.
    Harring, Jeffrey R.
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2023, 48 (03) : 320 - 348
  • [7] SEMIPARAMETRIC EFFICIENCY IN MULTIVARIATE REGRESSION-MODELS WITH MISSING DATA
    ROBINS, JM
    ROTNITZKY, A
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) : 122 - 129
  • [8] Distributed personalized imputation based on Gaussian mixture model for missing data
    Chen S.
    Liu Y.
    Neural Computing and Applications, 2024, 36 (23) : 14237 - 14250
  • [9] Missing Data Reconstruction Using Gaussian Mixture Models for Fingerprint Images
    Agaian, Sos S.
    Yeole, Rushikesh D.
    Rao, Shishir P.
    Mulawka, Marzena
    Troy, Mike
    Reinecke, Gary
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2016, 2016, 9869
  • [10] Parametric fractional imputation for mixed models with nonignorable missing data
    Yang, Shu
    Kim, Jae-Kwang
    Zhu, Zhengyuan
    STATISTICS AND ITS INTERFACE, 2013, 6 (03) : 339 - 347