Liouville type theorems of a nonlinear elliptic equation for the V-Laplacian

被引:13
|
作者
Huang, Guangyue [1 ]
Li, Zhi [1 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
关键词
Gradient estimate; Bakry-Emery Ricci curvature; Liouville-type theorem; RIEMANNIAN-MANIFOLDS; PARABOLIC EQUATION; HARMONIC MAPS; GEOMETRY;
D O I
10.1007/s13324-017-0168-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider Liouville type theorems for positive solutions to the following nonlinear elliptic equation: Delta(V) u + au log u = 0, where a is a nonzero real constant. By using gradient estimates, we obtain upper bounds of vertical bar del u vertical bar with respect to sup u and the lower bound of Bakry-Emery Ricci curvature. In particular, for complete noncompact manifolds with a < 0, we prove that any positive solution must be u equivalent to 1 under a suitable condition for a with respect to the lower bound of Bakry-Emery Ricci curvature. It generalizes a classical result of Yau.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 50 条