Gradient estimates of a nonlinear elliptic equation for the V-Laplacian

被引:2
|
作者
Zhao, Guangwen [1 ]
机构
[1] Wuhan Univ Technol, Dept Math, Wuhan 430070, Peoples R China
关键词
Gradient estimate; Harnack inequality; Nonlinear elliptic equation; MAXIMUM PRINCIPLE; HARMONIC MAPS; THEOREMS;
D O I
10.1007/s00013-019-01419-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies gradient estimates for positive solutions of the nonlinear elliptic equation Delta V(up)+lambda u=0,p >= 1,$$\begin{aligned} \Delta _V(u<^>p)+\lambda u=0,\quad p\ge 1, \end{aligned}$$\end{document}on a Riemannian manifold (M, g) with k-Bakry-emery Ricci curvature bounded from below. We consider both the case where M is a compact manifold with or without boundary and the case where M is a complete manifold.
引用
收藏
页码:457 / 469
页数:13
相关论文
共 50 条