In this paper, we consider Liouville type theorems for positive solutions to the following nonlinear elliptic equation: Delta(V) u + au log u = 0, where a is a nonzero real constant. By using gradient estimates, we obtain upper bounds of vertical bar del u vertical bar with respect to sup u and the lower bound of Bakry-Emery Ricci curvature. In particular, for complete noncompact manifolds with a < 0, we prove that any positive solution must be u equivalent to 1 under a suitable condition for a with respect to the lower bound of Bakry-Emery Ricci curvature. It generalizes a classical result of Yau.
机构:
Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
Banking Univ Ho Chi Minh City, Dept Math Econ, Ho Chi Minh City, VietnamTon Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
Phuong Le
Anh Tuan Duong
论文数: 0引用数: 0
h-index: 0
机构:
Hanoi Natl Univ Educ, Dept Math, Hanoi, VietnamTon Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
Anh Tuan Duong
Nhu Thang Nguyen
论文数: 0引用数: 0
h-index: 0
机构:
Hanoi Natl Univ Educ, Dept Math, Hanoi, VietnamTon Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
机构:
Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38271, Spain
Univ La Laguna, Fac Fis, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, SpainUniv Tecn Federico Santa Maria, Dept Matemat, Casilla 5-110,Avda Espana, Valparaiso, Chile