Occurrence of normal and anomalous diffusion in polygonal billiard channels

被引:38
|
作者
Sanders, DP
Larralde, H
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca, Morelos, Mexico
[2] Univ Warwick, Inst Math, Warwick CV4 7AL, Coventry, England
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.026205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which are irrational multiples of pi generically exhibit normal diffusion (linear growth of the mean squared displacement) when they have a finite horizon, i.e., when no particle can travel arbitrarily far without colliding. For the infinite horizon case we present numerical tests showing that the mean squared displacement instead grows asymptotically as t ln t. When the unit cell contains accessible parallel scatterers, however, we always find anomalous super-diffusion, i.e., power-law growth with an exponent larger than 1. This behavior cannot be accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anomalous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous diffusion, with the diffusion coefficient exhibiting a power-law divergence.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Normal and Anomalous Diffusion in Soft Lorentz Gases
    Klages, Rainer
    Gallegos, Sol Selene Gil
    Solanpaa, Janne
    Sarvilahti, Mika
    Rasanen, Esa
    PHYSICAL REVIEW LETTERS, 2019, 122 (06)
  • [22] Normal diffusion in crystal structures and higher-dimensional billiard models with gaps
    Sanders, David P.
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [23] Anomalous diffusion producing normal relaxation and transport
    Bendler, John T.
    Fontanella, John J.
    Shlesinger, Michael F.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (06)
  • [24] Characterization of diffusion processes: Normal and anomalous regimes
    Alves, Samuel B.
    de Oliveira, Gilson F., Jr.
    de Oliveira, Luimar C.
    de Silans, Thierry Passerat
    Chevrollier, Martine
    Oria, Marcos
    Cavalcante, Hugo L. D. de S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 447 : 392 - 401
  • [25] Crossover in diffusion equation: Anomalous and normal behaviors
    Lenzi, EK
    Mendes, RS
    Tsallis, C
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [26] Statistics of escape exponent in normal and anomalous diffusion
    Li, Jiangdan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (15)
  • [27] Normal and anomalous diffusion in random potential landscapes
    Camboni, F.
    Sokolov, I. M.
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [28] NORMAL ANOMALOUS DIFFUSION TRANSITION IN DISORDERED SOLIDS
    SVIRIDOV, VV
    FIZIKA TVERDOGO TELA, 1991, 33 (05): : 1569 - 1575
  • [29] Molecular Communication With Passive Receivers in Anomalous Diffusion Channels
    Trinh, Dung Phuong
    Jeong, Youngmin
    Kim, Sang-Hyo
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (10) : 2215 - 2219
  • [30] Aspects of diffusion in the stadium billiard
    Lozej, Crt
    Robnik, Marko
    PHYSICAL REVIEW E, 2018, 97 (01)