Occurrence of normal and anomalous diffusion in polygonal billiard channels

被引:38
|
作者
Sanders, DP
Larralde, H
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca, Morelos, Mexico
[2] Univ Warwick, Inst Math, Warwick CV4 7AL, Coventry, England
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.026205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which are irrational multiples of pi generically exhibit normal diffusion (linear growth of the mean squared displacement) when they have a finite horizon, i.e., when no particle can travel arbitrarily far without colliding. For the infinite horizon case we present numerical tests showing that the mean squared displacement instead grows asymptotically as t ln t. When the unit cell contains accessible parallel scatterers, however, we always find anomalous super-diffusion, i.e., power-law growth with an exponent larger than 1. This behavior cannot be accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anomalous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous diffusion, with the diffusion coefficient exhibiting a power-law divergence.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level
    Hapca, Simona
    Crawford, John W.
    Young, Iain M.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2009, 6 (30) : 111 - 122
  • [32] Deterministic diffusion in a gravitational billiard
    Basnarkov, L
    Urumov, V
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2003, (150): : 321 - 325
  • [33] Bifurcation and anomalous spectral accumulation in an oval billiard
    Makino, Hironori
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2019, 2019 (08):
  • [34] Coexistence of anomalous and normal diffusion in integrable Mott insulators
    Steinigeweg, R.
    Herbrych, J.
    Prelovsek, P.
    Mierzejewski, M.
    PHYSICAL REVIEW B, 2012, 85 (21):
  • [35] The Hamiltonian mean field model: anomalous or normal diffusion?
    Antoniazzi, Andrea
    Fanelli, Ducclo
    Ruffo, Stefano
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 122 - +
  • [36] Relation between anomalous and normal diffusion in systems with memory
    Morgado, R
    Oliveira, FA
    Batrouni, GG
    Hansen, A
    PHYSICAL REVIEW LETTERS, 2002, 89 (10)
  • [37] Signatures of normal and anomalous diffusion in nanotube systems by NMR
    Dvoyashkin, M.
    Wang, A.
    Katihar, A.
    Zang, J.
    Yucelen, G. I.
    Nair, S.
    Sholl, D. S.
    Bowers, C. R.
    Vasenkov, S.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 178 : 119 - 122
  • [38] Normal and anomalous diffusion of gravel tracer particles in rivers
    Ganti, Vamsi
    Meerschaert, Mark M.
    Foufoula-Georgiou, Efi
    Viparelli, Enrica
    Parker, Gary
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2010, 115
  • [39] Comment on "Diffusion on a solid surface: Anomalous is normal" - Reply
    Sancho, JM
    Lacasta, AM
    Lindenberg, K
    Sokolov, IM
    Romero, AH
    PHYSICAL REVIEW LETTERS, 2005, 94 (18)
  • [40] ANISOTROPIC NONLOCAL DIFFUSION OPERATORS FOR NORMAL AND ANOMALOUS DYNAMICS
    Deng, Weihua
    Wang, Xudong
    Zhang, Pingwen
    MULTISCALE MODELING & SIMULATION, 2020, 18 (01): : 415 - 443