Aspects of diffusion in the stadium billiard

被引:8
|
作者
Lozej, Crt [1 ]
Robnik, Marko [1 ]
机构
[1] Univ Maribor, CAMTP, Mladinska 3, SI-2000 Maribor, Slovenia
关键词
HYDROGEN-ATOM; QUANTUM LOCALIZATION; MAGNETIC-FIELD; SPECTRUM; RESONANCES; STATISTICS; CHAOS;
D O I
10.1103/PhysRevE.97.012206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a detailed numerical study of diffusion in the epsilon stadium of Bunimovich, and propose an empirical model of the local and global diffusion for various values of epsilon with the following conclusions: (i) the diffusion is normal for all values of epsilon (<= 0.3) and all initial conditions, (ii) the diffusion constant is a parabolic function of the momentum (i.e., we have inhomogeneous diffusion), (iii) the model describes the diffusion very well including the boundary effects, (iv) the approach to the asymptotic equilibrium steady state is exponential, (v) the so-called random model (Robnik et al., 1997) is confirmed to apply very well, (vi) the diffusion constant extracted from the distribution function in momentum space and the one derived from the second moment agree very well. The classical transport time, an important parameter in quantum chaos, is thus determined.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Cantori for the stadium billiard
    Meiss, J. D.
    CHAOS, 1992, 2 (02)
  • [2] Localization of eigenfunctions in the stadium billiard
    Bies, WE
    Kaplan, L
    Haggerty, MR
    Heller, EJ
    PHYSICAL REVIEW E, 2001, 63 (06):
  • [3] Limit theorems in the stadium billiard
    Bálint, P
    Gouëzel, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (02) : 461 - 512
  • [4] Stadium billiard with moving walls
    Cohen, D
    Wisniacki, DA
    PHYSICAL REVIEW E, 2003, 67 (02): : 262061 - 262061
  • [5] Limit Theorems in the Stadium Billiard
    Péter Bálint
    Sébastien Gouëzel
    Communications in Mathematical Physics, 2006, 263 : 461 - 512
  • [6] Survival probability for the stadium billiard
    Dettmann, Carl P.
    Georgiou, Orestis
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (23-24) : 2395 - 2403
  • [7] Symbolic dynamics of the stadium billiard
    Zheng, WM
    PHYSICAL REVIEW E, 1997, 56 (02): : 1556 - 1560
  • [8] Rotating leaks in the stadium billiard
    Appelbe, B.
    CHAOS, 2016, 26 (11)
  • [9] CURVATURE DISTRIBUTION OF STADIUM BILLIARD
    TAKAMI, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (08) : 2489 - 2491
  • [10] Lagrangian descriptors for the Bunimovich stadium billiard
    Carlo, Gabriel G.
    Montes, J.
    Borondo, F.
    PHYSICAL REVIEW E, 2022, 105 (01)